Due before tutorial, monday December 3rd.
Problems titled [SELF] are for your own practice and will not be marked.
If any calculations are required to obtain your answers, please show them.

1. Consider the linear equation

$$
x_{1}-2 x_{2}=2
$$

(a) [4 pts.] Plot the line (on the $x_{1}-x_{2}$ plane) which represents all the possible solutions of this equation.
(b) [3 pts.] Show that $\left(x_{1}, x_{2}\right)=(4,1)$ is a solution of this equation.
(c) [3 pts.] If $\left(x_{1}, x_{2}\right)=(0, \alpha)$ is a solution of this equation, find α.
(d) [SELF] Write down three additional solutions of the equation, other than the two discussed already.
2. Matrix inverses.
(a) [4 pts.] Find out and explain whether the matrices

$$
\left(\begin{array}{cc}
\frac{1}{2} & 0 \\
-\frac{1}{2} & 1
\end{array}\right) \quad \text { and } \quad\left(\begin{array}{cc}
2 & 0 \\
1 & -1
\end{array}\right)
$$

are inverse of one another.
(b) [5 pts.] The inverse matrix of $\left(\begin{array}{cc}2 & -3 \\ -1 & 2\end{array}\right)$ is the matrix $\left(\begin{array}{ll}2 & \alpha \\ 1 & 2\end{array}\right)$. Determine the value of α.
(c) [7 pts.] The matrices

$$
\left(\begin{array}{ccc}
1 & 1 & 2 \\
-2 & 3 & 2 \\
1 & 0 & 1
\end{array}\right) \quad \text { and } \quad\left(\begin{array}{ccc}
3 & -1 & -4 \\
4 & -1 & -6 \\
-3 & \beta & \gamma
\end{array}\right)
$$

are inverse of one another. Determine the values of β and γ.
(d) [SELF] Show that the matrix $A=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$ is its own inverse.
3. Given the matrices

$$
L=\left(\begin{array}{c}
3 \\
-2 \\
-1
\end{array}\right) \quad \text { and } \quad M=\left(\begin{array}{ccc}
1 & 1 & 2 \\
-2 & 3 & 2
\end{array}\right) \quad \text { and } \quad N=\left(\begin{array}{cc}
\alpha & \beta \\
x & y
\end{array}\right)
$$

Find out and explain which of the following quantitities are meaningful, and which are not. If meaningful, calculate the quantity.
(a) [SELF] $M N+L$
(b) [5 pts.] $N M L$
(c) $[\mathbf{4}$ pts. $] \quad M L-2 N M$
4. Linear systems of equations as matrices.
(a) [SELF] Write the following linear system of equations as a matrix equation:

$$
\begin{aligned}
& x+3 y=-2 \\
& -2 x+4 y=5
\end{aligned}
$$

(b) [4 pts.] Write the following linear system of equations as a matrix equation:

$$
\begin{aligned}
4 x+y-3 z & =2 \\
-2 x+2 y-z & =-3
\end{aligned}
$$

Note that the number of equations is not the same as the number of variables, so the coefficient matrix is not square.
5. Consider the system of equations

$$
\begin{aligned}
x-2 y+z & =3 \\
x-y+z & =-2 \\
-x-y & =3
\end{aligned}
$$

(a) [6 pts.] Write down the coefficient matrix A. Show that

$$
B=\left(\begin{array}{ccc}
1 & -1 & -1 \\
-1 & 1 & 0 \\
-2 & 3 & 1
\end{array}\right)
$$

is the inverse of the coefficient matrix.
(b) [5 pts.] Solve the system of equations using the inverse of the coefficient matrix.

