Due before tutorial, monday November 19th.
Problems titled [SELF] are for your own practice and will not be marked. If any calculations are required to obtain your answers, please show them. Your work will be marked for your reasoning/calculations as well as for giving the correct final answer.

1. Consider the function $g(x)$, plotted in the figure.

(a) [2 pts.] Sketch a plot of the function $f(x)=g(x)-2$, as a function of x.
(b) [3 pts.] Sketch a plot of the function $h(x)=g(x+1)$, as a function of x.
(c) [5 pts.] Sketch a plot of the derivative $g^{\prime}(x)$, as a function of x.
2. Consider the function

$$
f(x)=\frac{1}{x^{3}+2 x} .
$$

We will calculate the derivative in two ways.
(a) [3 pts.] Defining $g(x)=1$ and $h(x)=x^{3}+2 x$, we can write

$$
f(x)=\frac{g(x)}{h(x)} .
$$

Hence use the quotient rule to calculate the derivative $f^{\prime}(x)$.
(b) [4 pts.] If you define $u(x)=x^{3}+2 x$ and $g(u)=\frac{1}{u}$, then

$$
f(x)=g(u(x)) .
$$

Use the chain rule to calculate the derivative $f^{\prime}(x)$.
3. (a) [SELF] Find the critical point(s) of the function $f(x)=3+4 x-2 x^{2}$. How many critical points does this function have?
(b) [SELF] For each critical point, find out using the second derivative whether the function is a minimum or a maximum.
(c) [SELF] In which region (for which values of x) is the curve $f(x)$ concave downwards, and for which region is it convex downwards?
(d) [SELF] Express the function in the form $a+b(x-c)^{2}$. What are the values of a, b, and c ? Use this form to plot the graph of the function.
4. (a) [4 pts.] Find the critical point(s) of the function

$$
f(x)=x^{3}-6 x+1
$$

How many critical points does this function have?
(b) [4 pts.] For each critical point, find out using the second derivative whether the function is a minimum or a maximum.
(c) [2 pts.] In which region (for which values of x) is the curve $y=f(x)$ concave downwards, and for which region is it convex downwards?
5. (a) [SELF] Sketch a plot of the function $f(x)=e^{-x}$ without using a calculator. Hint: think about the behavior of the function at $x=0$, at large positive x, and at large negative x.
Use this knowledge to plot the function $g(x)=x e^{-x}$, without using a calculator. Hint: think about the behavior of the function at $x=0$, at large positive x, and at large negative x.
(b) [4 pts.] Find the critical point(s) of the function

$$
g(x)=x e^{-x}
$$

How many critical points does this function have?
(c) [4 pts.] For each critical point, find out using the second derivative whether the function is a minimum or a maximum.
(d) [2 pts.] In which region (for which values of x) is the curve $y=f(x)$ concave downwards, and for which region is it convex downwards?
6. Consider the function $R(t)$, plotted in the figure.

(a) [4 pts.] Sketch a plot of the function $S(t)=R(t-2)+1$, as a function of t.
(b) [4 pts.] Sketch a plot of the derivative, $R^{\prime}(t)$, as a function of t.
(c) [5 pts.] Sketch a plot of the second derivative or double derivative, $R^{\prime \prime}(t)$, as a function of t.

