Due before tutorial, monday October 22nd.

- Please STAPLE your work together before submitting!

It's painful for Aonghus to mark assignments on loose sheets.
And it's quite unfair to ask him to staple your pages for you!

- Problems titled [SELF] are for your own practice and will not be marked.
- If any calculations are required to obtain your answers, please show them. Your work will be marked for your reasoning/calculations as well as for giving the correct final answer.

1. Consider the linear function

$$
f(x)=-\frac{1}{2} x+1
$$

(a) [4 pts.] This function represents a straight line. What are the slope and $y$-intercept of the line?
(b) [6 pts.] Using the slope and $y$-intercept, sketch a plot of the function. Do NOT use a calculator. Explain in words how you used the slope and $y$-intercept to plot the function.
2. (a) [ $\mathbf{6}$ pts.] Consider the function

$$
f_{1}(x)=|(x-2)| .
$$

From a plot of the function, find out what the slope is for $x>2$ and $x<2$. Use this information to sketch a plot of the derivative $f_{1}^{\prime}(x)$.
(b) [6 pts.] Consider the function

$$
f_{2}(x)=\frac{|x|}{x} .
$$

Considering the slope of the function, sketch a plot of the derivative $f_{2}^{\prime}(x)$.
(c) [6 pts.] Consider the function

$$
f_{3}(x)=\frac{2 x+|x|}{x} .
$$

By finding the slope of the function in different regions, sketch a plot of the derivative $f_{3}^{\prime}(x)$.
(d) [4 pts.] Consider the function

$$
f_{4}(x)=2 x-4 .
$$

By finding the slope of the function in different regions, sketch a plot of the derivative $f_{4}^{\prime}(x)$.
3. Evaluate the following limits. If the limit does not exist, explain why.

In each case, also provide a sketch of the graph of the function in the relevant region, e.g., if you are evaluating $\lim _{x \rightarrow a} g(x)$, then plot the function $g(x)$ in the region around $x=a$.
(a) [3 pts.] $\lim _{x \rightarrow 1}\left(5 x^{2}-3\right)$
(b) $\left[3\right.$ pts.] $\lim _{x \rightarrow 1}\left(\frac{(x-1)^{2}}{x-1}\right)$
(c) $\left[\mathbf{3}\right.$ pts.] $\lim _{x \rightarrow 1}\left(\frac{|x|}{x}\right)$
(d) $[3$ pts. $] \quad \lim _{x \rightarrow 0}\left(\frac{1}{x}\right)$
(e) $\left[3\right.$ pts.] $\lim _{x \rightarrow 0}\left(\frac{x}{|x|}\right)$
(f) $\left[\mathbf{3} \mathbf{~ p t s . ]} \quad \lim _{x \rightarrow 1}\left(\frac{x}{x-1}\right)\right.$
(g) [SELF] $\lim _{x \rightarrow 0}\left(\frac{x^{2}}{|x|}\right)$
(h) $[$ SELF $] \quad \lim _{x \rightarrow 0}\left(\frac{(a+x)^{2}-a^{2}}{x}\right)$
(i) $[$ SELF $] \quad \lim _{x \rightarrow 0}\left(x+\frac{1}{x}\right)$
(j) [SELF] $\lim _{x \rightarrow 0}\left(\frac{x+x^{2}}{x}\right)$
(k) [SELF] $\lim _{x \rightarrow 1}\left(\frac{|x-1|}{x-1}\right)$
(1) [SELF] $\lim _{x \rightarrow 0}\left(x+\frac{|x-1|}{x-1}\right)$

