Due at the beginning of the third tutorial, monday October 9th.
Problems titled [SELF] are for your own practice and will not be marked.

1. (a) [10 pts.] Prove using mathematical induction that the following is true for all positive integers n :

$$
\sum_{i=1}^{n} \frac{1}{i(i+1)}=\frac{n}{n+1}
$$

(b) [4 pts.] From the above result, infer whether the infinite series

$$
\frac{1}{1 \cdot 2}+\frac{1}{2 \cdot 3}+\frac{1}{3 \cdot 4}+\frac{1}{4 \cdot 5}+\cdots
$$

converges or not. If so, what is the sum of this infinte series?
2. Please submit hand-drawn plots. You might want to first draw rough versions as you figure out what the graphs should look like, before copying the final version on to your submission.
(a) [5 pts.] Plot the following three functions on the same graph:

$$
f(x)=x^{2} \quad \text { and } \quad g(x)=-x^{2} \quad \text { and } \quad h(x)=(x-2)^{2}
$$

Your plot should extend roughly from -5 to +5 .
(b) [5 pts.] Plot the following two functions on the same graph:

$$
f(x)=x^{3} \quad \text { and } \quad g(x)=x^{3}+3
$$

Your plot should extend roughly from -2 to +2 .
(c) [5 pts.] Plot the following two functions on the same graph:

$$
f(x)=x^{2} \quad \text { and } \quad g(x)=x^{2}+\frac{1}{x}
$$

Your plot should extend roughly from -5 to +5 .
(d) [5 pts.] Plot the following two functions on the same graph:

$$
f(x)=x \quad \text { and } \quad g(x)=x-e^{-x}
$$

Your plot should extend roughly from -5 to +5 .
3. Assume $|x|<1$.
(a) [5 pts.] Consider the infinite series

$$
P=1+x+x^{2}+x^{3}+\cdots=\sum_{n=0}^{\infty} x^{n}
$$

Subtract $x P$ from P. Hence calculate P.
(b) [5 pts.] Consider the infinite series

$$
Q=x+2 x^{2}+3 x^{3}+4 x^{4}+\cdots=\sum_{n=1}^{\infty} n x^{n}
$$

Subtract $x Q$ from Q. Hence calculate Q.
(c) [3 pts.] Is P a geometric series? If so, put it in the form $a r^{n-1}$ by determining a and r. If not, explain why not.
(d) [3 pts.] Is Q a geometric series? If so, put it in the form $a r^{n-1}$ by determining a and r. If not, explain why not.
(e) [SELF] Show that the ratio

$$
\frac{P}{Q}=\frac{1+x+x^{2}+x^{3}+\cdots}{x+2 x^{2}+3 x^{3}+4 x^{4}+\cdots}
$$

is equal to $\frac{x}{1-x}$.
4. (a) [SELF] Prove using mathematical induction that

$$
a+a r+a r^{2}+\cdots+a r^{n-1}=a \frac{r^{n}-1}{r-1}
$$

for any positive integer n. (We proved this in class using a completely different method.)
(b) [SELF] Using the above result, explain why the infinite series

$$
a+a r+a r^{2}+\cdots
$$

diverges whenever $|r|>1$, but convereges whenever $|r|<1$.
5. (a) [SELF] Prove using mathematical induction that

$$
1+3+5+7+\cdots+(2 n-1)=n^{2}
$$

for any positive integer n.
(b) [SELF] Prove the same result using the formula we derived in class for the sum of an arithmetic series.
(c) [SELF] Use the result above to argue whether the infinite series

$$
1+3+5+7+\cdots
$$

converges or diverges.

