Due before the second tutorial, monday October 8th.
The problems marked [SELF] are for your own practice and extra exercise; they will not be marked. No need to include them in your submission.

1. Find the formula for the n-th term of each geometric sequence below.
(a) $[3$ pts.] $2,6,18,54,162, \ldots$
(b) $\left[\mathbf{5} \mathbf{~ p t s .]} \quad 9,-3,1,-\frac{1}{3}, \frac{1}{9},-\frac{1}{27}, \ldots\right.$.
(c) $[$ SELF $] \quad-10,5,-\frac{5}{2}, \frac{5}{4},-\frac{5}{8}, \frac{5}{16}, \ldots$
2. Find the sum of the finite arithmetic series below.

If you need to find the number of terms in the series, you could try first writing a formula for the n-th term of the sequence, and then figuring out which n the last term corresponds to.
(a) $[\mathbf{4} \mathbf{~ p t s .]}$

$$
1+2+3+4+\cdots+200
$$

(b) $[5 \mathrm{pts}$.

$$
-2+6+14+22+\cdots+238
$$

(c) $[$ SELF $]$

$$
4+7+10+13+\cdots+100
$$

(d) $[$ SELF $]$

$$
2+6+10+14+\cdots+122
$$

3. (a) [6 pts.] Find the sum of the first 100 terms of the series

$$
(-8)+(-5)+(-2)+1+4+\cdots
$$

You may want to first find the last term of the finite series, i.e., the 100th term.
(b) [6 pts.] Find the sum of the first 200 terms of the series

$$
-2-6-10-14-\ldots
$$

4. Find the sum of the finite geometric series.
(a) $[\mathbf{6}$ pts.]

$$
2+1+\frac{1}{2}+\frac{1}{4}+\cdots+\frac{1}{1024}
$$

(b) [SELF]

$$
5+5(0.9)+5(0.9)^{2}+5(0.9)^{3}+\cdots+5(0.9)^{14}
$$

(c) [SELF]

$$
1+2+4+8+\cdots+2048
$$

5. Find the sum of the infinite geometric series.
(a) $[5 \mathrm{pts}$.

$$
5+5(0.9)+5(0.9)^{2}+5(0.9)^{3}+\cdots
$$

(b) [5 pts.]

$$
\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\cdots
$$

(c) $[5 \mathrm{pts}$.

$$
1+2+4+8+\cdots
$$

(d) [SELF]

$$
3+1+\frac{1}{3}+\frac{1}{9}+\cdots
$$

