Due <u>before</u> the second tutorial, monday October 8th.

The problems marked [SELF] are for your own practice and extra exercise; they will not be marked. No need to include them in your submission.

- 1. Find the formula for the *n*-th term of each geometric sequence below.
 - (a) **[3 pts.]** 2, 6, 18, 54, 162, (b) **[5 pts.]** 9, -3, 1, $-\frac{1}{3}$, $\frac{1}{9}$, $-\frac{1}{27}$, (c) **[SELF]** $-10, 5, -\frac{5}{2}, \frac{5}{4}, -\frac{5}{8}, \frac{5}{16}, \dots$
- 2. Find the sum of the finite arithmetic series below.

If you need to find the number of terms in the series, you could try first writing a formula for the n-th term of the sequence, and then figuring out which n the last term corresponds to.

(a) [4 pts.] $1+2+3+4+\dots+200$
(b) [5 pts.] $-2 + 6 + 14 + 22 + \dots + 238$
(c) [SELF] $4 + 7 + 10 + 13 + \dots + 100$
(d) [SELF] $2+6+10+14+\dots+122$

3. (a) [6 pts.] Find the sum of the first 100 terms of the series

 $(-8) + (-5) + (-2) + 1 + 4 + \cdots$

You may want to first find the last term of the finite series, i.e., the 100th term.

(b) [6 pts.] Find the sum of the first 200 terms of the series

$$-2 - 6 - 10 - 14 - \cdots$$

- 4. Find the sum of the finite geometric series.
 - (a) [6 pts.] $2 + 1 + \frac{1}{2} + \frac{1}{4} + \dots + \frac{1}{1024}$ (b) [SELF] $5 + 5 (0.9) + 5 (0.9)^2 + 5 (0.9)^3 + \dots + 5 (0.9)^{14}$ (c) [SELF] $1 + 2 + 4 + 8 + \dots + 2048$
- 5. Find the sum of the infinite geometric series.

(a) [5 pts.]	$5 + 5(0.9) + 5(0.9)^2 + 5(0.9)^3 + \cdots$
(b) [5 pts.]	$\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \cdots$
(c) [5 pts.]	$1+2+4+8+\cdots$
(d) [SELF]	$3 + 1 + \frac{1}{3} + \frac{1}{9} + \cdots$