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1. N non-relativistic non-interacting spinless bosons of mass m are confined to a
square pipe with walls at x = 0 and x = L and at y = 0 and y = L. They also
experience a harmonic oscillator potential V (z) = 1

2
mω2z2 in the z-direction.

(a) Show that the density of states for this system is g(ε) ≈ 2π2mL2

3h3ω
ε.

You may assume that ε� ~ω and ε� h2

2mL2 [15 marks]

g(E) is defined so that the number of states with energies between E and

E + dE is equal to g(E)dE. Here, we have E~n =
h2(n2

x+n
2
y)

2mL2 + ~ω(nz + 1
2
),

where nx, ny and nz are positive integers. Let f(E) be the number of
states with energy less than or equal to E. f(E) is equal to the number of
points with positive integer coordinates (nx, ny, nz) which lie inside a right
circular cone. The base of this cone is a disk of radius

√
2mEL/h in the

(nx, ny)-plane and the apex lies on the nz axis at nz = E/(~ω) − 1
2
. Since

there is one point with integer coordinates per unit area in ~n-space, f(E)
is (approximately) just the volume of the intersection of this cone with the
positive quadrant, so one quarter of the volume of the cone. This gives
f(E) = 1

12

(
E
~ω −

1
2

)
π(2mEL2/h2) ≈ π2mL2

3h3ω
E2. (We are making a small

relative error by replacing E/~ω− 1
2

by E/~ω as E � ~ω.) By definition of

g, we have f(E) =
∫ E
ε0
g(E ′)dE ′ where ε0 is the single particle ground state

energy. Hence g(E) = df
dE

and indeed g(ε) ≈ 2π2mL2

3h3ω
ε as required. Of course

we are making an error due to the fact that individual points in ~n-space may
fall just inside or outside the cone, but this is small (in relative terms) for
large enough energies compared to ~ω and h2/2mL2.

(b) Argue that this system exhibits a Bose condensation transition and find
the critical temperature TC . [15 marks]
You may use that

∫∞
0

x
ex−1 dx = π2

6
.

We treat the system in the grand canonical formalism, so we can in principle
exchange particles with a particle bath, but the chemical potential µ of this
bath is set to make sure that the average total number of particles in the
system satisfies the formula

N = 〈N〉 =
∑
s

nBE(s) =
∑
s

1

eβ(ε(s)−µ) − 1
.

Here the sum is over all single particle states s of the system. Note that
we must have µ ≤ ε0 = 1

2
~ω, since otherwise there would be states with

ε < µ and for these states the average number of particles nBE would be
negative. In the limit N →∞, if no single state contains a finite fraction of
the number of particles, we can replace the sum by an integral over energies
using the density of states and we get

N = 〈N〉 =

∫ ∞
ε0

g(ε)nBE(ε, µ) dε = D

∫ ∞
ε0

ε

eβ(ε−µ) − 1
dε,
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where D = 2π2mL2

3h3ω
. If Bose condensation occurs, there will be a finite fraction

of the number of particles in the single particle ground state and this integral
formula breaks down, that is, the equation does not allow a solution for µ
with µ < ε0. The temperature TC at which the transition occurs will be
the temperature for which the equation is satisfied with µ = ε0 (below this
temperature a condensate forms). Setting µ = ε0 and T = TC , we obtain

N ≈ D

∫ ∞
ε0

ε

e(ε−ε0)/(kTC) − 1
dε = D(kTC)2

∫ ∞
0

x+ ε0
kTC

ex − 1
dx

≈ D(kTC)2
∫ ∞
0

x

ex − 1
dx =

π2

6
Dk2T 2

C =
π4mL2k2

9h3ω
T 2
C

The second equality uses substitution of x = (ε − ε0)/(kTC). Going to the
second line can be done by using kTc � ε0 or in a number of other ways.
For example changing ε to ε− ε0 in g(ε) clearly improves g(ε) for small ε and

makes little difference for ε� ε0. We now find TC = 3h
π2k

√
hω
m

√
N/L2.

(c) Show that, for temperatures T < TC , the energy E(T ) of the system
satisfies E(T ) = N0

N
E0 + C(N −N0)T .

Here, E0 is the energy at T = 0, N0 is the number of condensed particles
and C is a constant, independent of T , L, m and ω. [15 marks]

The energy of the system equals the energy of the N0 condensed particles,
which is N0ε0 = N0

N
Nε0 = N0

N
E0, plus the energy of particles in excited

states. The number of particles in states at higher energies, N−N0, is given
by a very similar integral to that performed in part (b),

N−N0 = D

∫ ∞
ε0

ε

e(ε−ε0)/(kT ) − 1
dε ≈ D(kT )2

∫ ∞
0

x

ex − 1
dx =

π2

6
D(kT )2.

Here we set µ = ε0 which is justified since for T < TC , the occupation
of the ground state is of order N and we must have 1

eβ(ε0−µ)−1 ∼ N so

eβ(ε0−µ) − 1 ∼ 1
N

and ε0 − µ ∼ 1
βN

) which is small at large N . We see that

N − N0 = N( T
TC

)2 and hence N0 = N(1 − ( T
TC

)2). For the energy in the
excited states we write similarly that

Eexc = D

∫ ∞
ε0

ε2

e(ε−ε0)/(kT ) − 1
dε ≈ D(kT )3

∫ ∞
0

x2

ex − 1
dx = 2ζ(3)D(kT )3.

Here 2ζ(3) is the value of the integral, but the only important thing here is

to realize that this is a constant. We now see that Eexc = 12ζ(3)
π2 (N −N0)kT

and we have the desired result, with C = 12ζ(3)
π2
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2. A large object moves through a fluid at a nonrelativistic velocity ~v. The motion
of the object excites a quantum excitation of the fluid, with energy Eexc and
momentum ~pexc. Total energy and momentum are conserved in this process.
The final velocity of the object is ~v′ and you may assume that |~v − ~v′| � |~v|.

(a) Show that we must have |~v| ≥ Eexc
|~pexc| [10 marks]

Conservation of energy and momentum give m~v = m~v′ + ~pexc (or ~pexc =
m(~v − ~v′)) and 1

2
m|~v|2 = 1

2
m|~v′|2 + Eexc. We then have that

Eexc =
1

2
m|~v′|2 − 1

2
m|~v|2 =

1

2
m
(
|~v + (~v′ − ~v)|2 − |~v|2

)
=

1

2
m
(
|~v|2 + 2~v′ · (~v′ − ~v) +O(|(~v − ~v′)|2)− |~v|2

)
≈ 1

2
m
(

2~v′ · (~v′ − ~v)
)
≈ −1

2
m

(
2~v · ~pexc

m

)
= −~v · ~pexc ≤ |~v||~pexc|

and hence, indeed |~v| ≥ Eexc
|~pexc| .

(b) Suppose the fluid’s dispersion relation satisfies Eexc/|~pexc| ≥ vc for some
speed vc. What conclusions can we draw about the fluid? Particularly
about friction between this fluid and macroscopic objects? [10 marks]

The fluid is a superfluid with critical velocity vc, that is, it will flow past
macroscopic objects without any friction at all as long as the relative velocity
of fluid and object is less than vc. The mechanicsm for friction is transfer
of energy between the object and fluid and this has to take place through
creation of excitations in the fluid. Since this is not possible at speeds below
vc, according to part (a), we find that there is no friction at those speeds.
At higher speeds there will be friction.
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3. A system of fermions hopping on a one-dimensional lattice is described by the
following Hamiltonian

H = −t
∑
l

(
cl c
†
l+1 − c

†
l cl+1

)
− s

∑
l

(
cl cl+1 − c

†
l c
†
l+1

)
,

Here, the c†l and cl are fermionic creation and annihilation operators at site l.
The constants s and t are energies and the sum ranges over all l ∈ Z.

(a) We can define spin operators in terms of the fermionic creation operators
as follows,

σzl = 2c†l cl − 1 σxl =

(∏
j<l

σzj

)
(cl + c†l ) σyl = iσzl σ

x
l

Check that the spin operators at different sites commute. Also show that
at any fixed site l we have (σxl )2 = (σyl )

2 = (σzl )
2 = 1 as well as the

equation σxl σ
y
l = iσzl and its cyclic permutations. [15 marks]

For different sites l and m, we see that [σzl , σ
z
m] = 0, since the operators

cl and c†l both anticommute with cm and c†m. This means that exchanging

c†l cl with c†mcm yields an overall plus sign (4 minus signs from the indivi-
dual exchanges of the creation/annihilation operators). We then see that
[σzl , σ

x
m] = 0 if [σzl , cm + c†m] = 0, since we already know that σzl commutes

with σzj for all j < m. But [σzl , cm + c†m] = 2[c†l cl , cm] + 2[c†l cl , c
†
m] = 0,

since c†m and cm both anticommute with both c†l and cl . We then see that
[σzl , σ

y
m] = [σxl , σ

y
m] = [σyl , σ

y
m] = 0 since σym = iσzmσ

x
m and we already

checked that the σx and σz operators at different sites commute. For the
relations at a particular site l, we first note that σzl = 2nl − 1 = (−1)nl+1

where nl ∈ {0, 1} is the occupation number at site l. This immediately gives
us (σzl )

2 = 1. We then have (σxl )2 = (c†l + cl )
2 = 1

2
{cl, cl} + 1

2
{c†l , c

†
l} +

{cl , c
†
l} = 0+0+1 = 1. The operator c†l +cl in σxl changes nl to nl±1 so it

changes the action of σzl by a minus sign and we find σxl σ
z
l = −σzl σxl . This gi-

ves (σyl )
2 = −σxl σzl σxl σzl = (σxl )2(σzl )

2 = 1. Finally, we defined σyl = iσzl σ
x
l

and we can now check that

iσxl σ
y
l = −σxl σzl σxl = σzl and iσyl σ

z
l = −σzl σxl σzl = σxl

(b) We now set s = t. Show that H = −t
∑

l σ
x
l σ

x
l+1 [10 marks]

We calculate

σxl σ
x
l+1 = (cl + c†l )σ

z
l (cl+1 + c†l+1) = (cl + c†l )(2c

†
l cl − 1)(cl+1 + c†l+1)

= (2cl c
†
l cl − cl − c

†
l )(cl+1 + c†l+1) = (cl − c

†
l )(cl+1 + c†l+1)

= cl c
†
l+1 − c

†
l cl+1 + cl cl+1 − c

†
l c
†
l+1
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and the result follows directly on comparison with the formula for H given
initially (setting s = t in that formula).

(c) Describe the ground state or ground states of the system with s = t and
t > 0 in the spin language. What is the expectation value of the number
of fermions occupying site l in the ground state(s)? [10 marks]

The eigenstates of H can be chosen to be simultaneous eigenstates of all
σxl . We can denote these eigenstates |→〉l and |←〉l, with eigenvalues ±1.
The system has ferromagnetic interactions. The terms −tσxl σxl+1 yield energy
contributions +t if the arrows at sites l and l+ 1 point in opposite directions
and −t if they point in the same direction. There are two ground states,
with all spins pointing in the same direction, either all to the left or all to
the right, i.e.

∏
l |←〉l and

∏
l |→〉l. Looking at the fermions, we note that

〈nl〉 = 〈1
2
(σzl + 1)〉. This equals 1

2
since the expectation value 〈σz〉 = 0 in

the eigenstates of σx. Thus we see that in the ground state at t = s, we
have a 50% chance of finding a fermion at any site.
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