

OLLSCOIL NA hÉIREANN MÁ NUAD THE NATIONAL UNIVERSITY OF IRELAND MAYNOOTH

MATHEMATICAL PHYSICS

SEMESTER 2 2016-2017

Condensed Matter Theory Interactions, Magnetism and Superconductivity MP473

Prof. S. J. Hands, Dr. J. K. Slingerland and Dr. J.-I. Skullerud

Time allowed: $1\frac{1}{2}$ hours Answer ALL questions

- 1. N non-relativistic non-interacting spinless bosons of mass m are confined to a square pipe with walls at x = 0 and x = L and at y = 0 and y = L. They also experience a harmonic oscillator potential $V(z) = \frac{1}{2}m\omega^2 z^2$ in the z-direction.
 - (a) Show that the density of states for this system is $g(\epsilon) \approx \frac{2\pi^2 m L^2}{3h^3 \omega} \epsilon$. You may assume that $\epsilon \gg \hbar \omega$ and $\epsilon \gg \frac{h^2}{2mL^2}$ [15 marks]
 - (b) Argue that this system exhibits a Bose condensation transition and find the critical temperature T_C . [15 marks] You may use that $\int_0^\infty \frac{x}{e^x - 1} dx = \frac{\pi^2}{6}$.
 - (c) Show that, for temperatures $T < T_C$, the energy E(T) of the system satisfies $E(T) = \frac{N_0}{N}E_0 + C(N - N_0)T$. Here, E_0 is the energy at T = 0, N_0 is the number of condensed particles and C is a constant, independent of T, L, m and ω . [15 marks]
- 2. A large object moves through a fluid at a nonrelativistic velocity \vec{v} . The motion of the object excites a quantum excitation of the fluid, with energy E_{exc} and momentum \vec{p}_{exc} . Total energy and momentum are conserved in this process. The final velocity of the object is $\vec{v'}$ and you may assume that $|\vec{v} \vec{v'}| \ll |\vec{v}|$.
 - (a) Show that we must have $|\vec{v}| \ge \frac{E_{exc}}{|\vec{p}_{exc}|}$ [10 marks]
 - (b) Suppose the fluid's dispersion relation satisfies $E_{exc}/|\vec{p}_{exc}| \geq v_c$ for some speed v_c . What conclusions can we draw about the fluid? Particularly about friction between this fluid and macroscopic objects? [10 marks]

Question 3 is on the next page

3. A system of fermions hopping on a one-dimensional lattice is described by the following Hamiltonian

$$H = -t \sum_{l} \left(c_{l} c_{l+1}^{\dagger} - c_{l}^{\dagger} c_{l+1} \right) - s \sum_{l} \left(c_{l} c_{l+1} - c_{l}^{\dagger} c_{l+1}^{\dagger} \right),$$

Here, the c_l^{\dagger} and c_l are fermionic creation and annihilation operators at site l. The constants s and t are energies and the sum ranges over all $l \in \mathbb{Z}$.

(a) We can define spin operators in terms of the fermionic creation operators as follows,

$$\sigma_l^z = 2c_l^{\dagger}c_l - 1 \qquad \sigma_l^x = \left(\prod_{j < l} \sigma_j^z\right)(c_l + c_l^{\dagger}) \qquad \sigma_l^y = i\sigma_l^z\sigma_l^x$$

Check that the spin operators at different sites commute. Also show that at any fixed site l we have $(\sigma_l^x)^2 = (\sigma_l^y)^2 = (\sigma_l^z)^2 = 1$ as well as the equation $\sigma_l^x \sigma_l^y = i\sigma_l^z$ and its cyclic permutations. [15 marks]

- (b) We now set s = t. Show that $H = -t \sum_{l} \sigma_{l}^{x} \sigma_{l+1}^{x}$ [10 marks]
- (c) Describe the ground state or ground states of the system with s = t and t > 0 in the spin language. What is the expectation value of the number of fermions occupying site l in the ground state(s)? [10 marks]