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1. A 1-dimensional magnet consists of N spin-1
2

particles, interacting with each
other and with a magnetic field through the following Hamiltonian,

H = −J
N−2∑
i=0

(
σxi σ

x
i+1 + σyi σ

y
i+1

)
− h

N−1∑
i=0

σzl ,

where J and h are real constants.
We define fermionic creation and annihilation operators in terms of the spin
operators by the following Jordan-Wigner formula,

cl =
1

2

(∏
j<l

σzj

)
(σxl + iσyl ) c†l =

1

2

(∏
j<l

σzj

)
(σxl − iσ

y
l )

It is given that these satisfy the canonical anticommutation relations for fer-
mionic creation and annihilation operators.

(a) Derive that the Hamiltonian can be rewritten as,

H = −2J
N−2∑
l=0

(
c†l cl+1 − cl c

†
l+1

)
+ h(2NF −N)

where NF is the total number of fermions in the system [20 marks]

We have cl + c†l =
(∏

j<l σ
z
j

)
σxl and hence σxl =

(∏
j<l σ

z
j

)
(cl + c†l ).

Similarly, we find that σyl = i
(∏

j<l σ
z
j

)
(c†l − cl ). We also have c†l cl =

1
4
(σxl − iσ

y
l )(σ

x
l + iσyl )) = 1

2
(1−σzl ), so σzl = 1−2c†l cl = 1−2n̂l. This gives

σxl σ
x
l+1 = (cl + c†l )σ

z
l (cl+1 + c†l+1) = −(cl + c†l )(2c

†
l cl − 1)(cl+1 + c†l+1)

and

σyl σ
y
l+1 = −(c†l − cl )σ

z
l (c
†
l+1 − cl+1) = (c†l − cl )(2c

†
l cl − 1)(c†l+1 − cl+1)

Noting that

c†l (2c
†
l cl − 1) = −c†l

cl (2c
†
l cl − 1) = 2({cl , c

†
l} − c

†
l cl )cl − cl = cl

we find that

σxl σ
x
l+1 = (c†l − cl )(cl+1 + c†l+1) = −cl cl+1 − cl c

†
l+1 + c†l cl+1 + c†l c

†
l+1

σyl σ
y
l+1 = −(c†l + cl )(c

†
l+1 − cl+1) = cl cl+1 − cl c

†
l+1 + c†l cl+1 − c

†
l c
†
l+1

and further using that
∑N−1

i=0 n̂i = NF , we see that the Hamiltonian has the
required form.
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(b) We now introduce the Fourier transformed raising and lowering operators

dk =
1√
N

N−1∑
l=0

cl e
2πi lk/N d†k =

1√
N

N−1∑
l=0

c†l e
−2πi lk/N

Show that these operators satisfy the canonical anticommutation relati-
ons for fermionic raising and lowering operators. [15 marks]

We have

{dk, d
†
k} =

1

N

N−1∑
l,l′=0

{cl , c
†
l′}e

2πi(lk−l′k′)/N =
1

N

N−1∑
l=0

e2πil(k−k
′)/N = δk,k′

We used firstly {cl , c
†
l′} = δl,l′ (it was given that the ci satisfy the canonical

anticommutation relations) and secondly
∑N−1

l=0 e2πil(k−k
′)/N = Nδk,k′ . We

can also see directly from {cl , cl′} = 0 that {dk, dk′} = 0.

(c) We now change the Hamiltonian of the fermionic system slightly by in-
cluding a coupling between the beginning and end of the chain (so it is
effectively a ring). To write this in a convenient way we define cN := c0.

The new Hamiltonian is H̃ = −2J
∑N−1

l=0

(
c†l cl+1 − cl c

†
l+1

)
+h(2NF −N).

Show that H̃ = −4J
∑N−1

k=0 cos(2πk/N)d†kdk + h(2NF −N).
Find the energy of the ground state and first excited state of the system
when h > 2J > 0. [15 marks]

The term h(2NF −N) does not change under Fourier transformation. For
the rest of the Hamiltonian, we have

H̃ = −2J/N
∑
l,k,k′

(
d†kdk′e

2πilk/Ne−2πi(l+1)k′/N − dkd
†
k′e
−2πilk/Ne+2πi(l+1)k′/N

)

= −2J/N
∑
k,k′

(
e−2πik

′
d†kdk′

∑
l

e2πil(k−k
′)/N − e+2πik′dkd

†
k′

∑
l

e2πil(k
′−k)/N

)

= −2J
∑
k

(
e−2πik/Nd†kdk − e

2πik/Ndkd
†
k

)
= −4J

N−1∑
k=0

cos(2πk/N)d†kdk + 2J
∑
k

e2πik/N = −4J
N−1∑
k=0

cos(2πk/N)d†kdk

We now note that if h > 2J > 0, every fermion that is present gives a
positive contribution to the energy. Concretely, a fermion with wave number
k contributes energy 2h − 4J cos(2πk/N) > 2h − 4J > 0. Therefore, in
the ground state, there are no fermions (NF = n̂k = 0 for all k) and we
find E0 = −hN . In the first excited state there will be one fermion. The
minimal energy cost is achieved when this fermion has k = 0. We then have
E1 = −hN + 2(h− 2J). The system becomes gapless at h = 2J
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2. A system of spinless (or spin polarized) fermions of mass m in one space
dimension has the following Hamiltonian

H =
∑
k

~2k2

2m
c†kck +

∑
k,k′,q,n

λnq
2nc†k+qc

†
k′−qck′ck

The fermions are confined to a line segement of length L with periodic boun-
dary conditions. Hence the wave numbers k, k′ and q which appear are all
integer multiples of 2π

L
. The sum over n runs over all nonnegative integers and

the λn are coupling constants.

(a) In this part, we set the coupling constants λn equal to zero for all n.
Let {k1, . . . , kN} be a set of N wave numbers.
Show that the state

∏N
i=1 c

†
ki
|0〉 is an eigenstate of H and find its energy.

[15 marks]

All we need is to find the action of n̂k = c†kck on the given state, for all

k. If k 6∈ {k1, . . . , kN} then ck anticommutes with c†ki for all i and we find

c†kck
∏N

i=1 c
†
ki
|0〉 = (−1)Nc†k

∏N
i=1 c

†
ki
ck|0〉 = 0, since ck|0〉 = 0 for all k. If

k = kj for some j, then we have

c†kjckj

N∏
i=1

c†ki |0〉 =

(
j−1∏
i=1

c†ki

)
c†kjckjc

†
kj

(
N∏

i=j+1

c†ki

)
|0〉 =

N∏
i=1

c†ki |0〉

The last equality follows from c†kjckjc
†
kj

= ({c†kj , ckj} − ckjc
†
kj

)c†kj = c†kj ,

which itself follows from (c†kj)
2 = 0 and {c†kj , c } = 1. Thus all these states

are eigenstates of the c†kck which means they are also eigenstates of H and

we read off that the eigenvalue of the given state is
∑

i
~2k2i
2m

(b) We now consider the case with λn 6= 0 for all n ≥ 0. We treat the
new nonzero terms in the Hamiltonian as a perturbation. Show that the
correction to the energy of the states considered in part (a) in first order
perturbation theory is given by

∆E = −
∑

k,k′∈{k1,...,kN}

∞∑
n=1

λn(k′ − k)2n [20 marks]

The correction to the energy is simply the expectation value of the interaction
terms in H in the unperturbed eigenstates

∏N
i=1 c

†
ki
|0〉. The expectation

value of a term q2nc†k+qc
†
k′−qck′ck can be nonzero only if all of k, k′, k + q

and k′ − q are elements of {k1, . . . , kN} since otherwise either ck or ck′
commute to the right through

∏N
i=1 c

†
ki

to act on |0〉 (which gives 0) or c†k+q
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or c†k′−q similarly commute to the left to act on 〈0| (again giving 0). In
fact, we must have {k + q, k′ − q} = {k, k′} to get a nonzero expectation
value, i.e. the interaction must annihilate and create particles at the same
momenta, or the initial and final state will have different occupation numbers
and they will have overlap zero. This can also be shown by direct use of the
anticommutation relations, very similarly to the computation in part (a). As
a result we must have either k = k+ q and k′ = k′− q and hence q = 0 (this
possibility gives zero whenever n > 0 due to the factor q2n), or k′ = k + q
and k = k′ − q and hence q = k′ − k. The sum over q is then reduced to
only two terms. The sums over k and k′ are reduced to sums over the set
{k1, . . . , kN}. We have

∆E =
∑
k,k′

(
λ0〈ψ|c†kc

†
k′ck′ck|ψ〉+

∞∑
n=0

λn(k′ − k)2n〈ψ|c†k′c
†
kck′ck|ψ〉

)

=
∑
k 6=k′

(
λ0〈ψ|n̂kn̂k′ |ψ〉 −

∞∑
n=0

λn(k′ − k)2n〈ψ|n̂kn̂k′|ψ〉

)

= −
∑

k,k′∈{k1,...,kN}

∞∑
n=1

λn(k′ − k)2n

as claimed. Notice that in the last step, we used that the occupation numbers
nk, nk′ equal 1 in the state ψ for k, k′ ∈ {k1, . . . , kN}, k 6= k. Also the λ0
terms cancel and after that we can drop the requirement that k 6= k′ since
all remaining terms equal zero when k = k′.

(c) We now consider a system which has λ1 = V/L for some constant V > 0
and λn = 0 for n > 1.
Calculate the expectation value of the energy per particle in the ground
state of the non-interacting system, at large N . Express the result in
terms of the mass m, the constant V and the particle density n = N

L

[15 marks]

The ground states of the non-interacting system are superpositions of the
states

∏N/2
l=−N/2+1 c

†
2πl~/L and

∏N/2−1
l=−N/2 c

†
2πl~/L, when N is even, while if N

is odd there is a unique ground state,
∏(N−1)/2

l=−(N−1)/2 c
†
2πl~/L. Either way, the

kinetic energy per particle is, to good approximation, given by

Ekin
N
≈ L

2πN

∫ πN/L

−πN/L

~2k2

2m
dk =

L~2

4πmN

2

3
(
πN

L
)3 =

~2π2

6m
n2.
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The potential energy is given by the formula in part (b), which reduces to

∆E

N
= −λ1

N

(N/2)(2π/L)∑
k,k′=−(N/2)(2π/L)

(k′ − k)2 ≈ − V

NL

L2

4π2

∫ Nπ
L

−Nπ
L

dk

∫ Nπ
L

−Nπ
L

dk′(k′ − k)2

= − V L

12π2N

∫ Nπ
L

−Nπ
L

dk

{
(
Nπ

L
− k)3 − (−Nπ

L
− k)3

}

= − V L

48π2N

[
(
Nπ

L
− k)4 − (−Nπ

L
− k)4

]k=Nπ
L

k=−Nπ
L

=
V L

24π2N

(
2Nπ

L

)4

=
2π2

3
V

(
N

L

)3

=
2π2V

3
n3
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