

Maynooth
 University

National University of Ireland Maynooth

OLLSCOIL NA hÉIREANN MÁ NUAD THE NATIONAL UNIVERSITY OF IRELAND MAYNOOTH

MATHEMATICAL PHYSICS

AUTUMN REPEAT EXAMINATION

$$
2016-2017
$$

Condensed Matter Theory
Interactions, Magnetism and Superconductivity
MP473

Prof. S. J. Hands, Dr. J. K. Slingerland and Dr. J.-I. Skullerud

Time allowed: $1 \frac{1}{2}$ hours
Answer ALL questions

1. A 1-dimensional magnet consists of N spin- $\frac{1}{2}$ particles, interacting with each other and with a magnetic field through the following Hamiltonian,

$$
H=-J \sum_{i=0}^{N-2}\left(\sigma_{i}^{x} \sigma_{i+1}^{x}+\sigma_{i}^{y} \sigma_{i+1}^{y}\right)-h \sum_{i=0}^{N-1} \sigma_{l}^{z}
$$

where J and h are real constants.
We define fermionic creation and annihilation operators in terms of the spin operators by the following Jordan-Wigner formula,

$$
c_{l}=\frac{1}{2}\left(\prod_{j<l} \sigma_{j}^{z}\right)\left(\sigma_{l}^{x}+i \sigma_{l}^{y}\right) \quad c_{l}^{\dagger}=\frac{1}{2}\left(\prod_{j<l} \sigma_{j}^{z}\right)\left(\sigma_{l}^{x}-i \sigma_{l}^{y}\right)
$$

It is given that these satisfy the canonical anticommutation relations for fermionic creation and annihilation operators.
(a) Derive that the Hamiltonian can be rewritten as,

$$
H=-2 J \sum_{l=0}^{N-2}\left(c_{l}^{\dagger} c_{l+1}-c_{l} c_{l+1}^{\dagger}\right)+h\left(2 N_{F}-N\right)
$$

where N_{F} is the total number of fermions in the system
[20 marks]
(b) We introduce the Fourier transformed raising and lowering operators

$$
d_{k}=\frac{1}{\sqrt{N}} \sum_{l=0}^{N-1} c_{l} e^{2 \pi i l k / N} \quad d_{k}^{\dagger}=\frac{1}{\sqrt{N}} \sum_{l=0}^{N-1} c_{l}^{\dagger} e^{-2 \pi i l k / N}
$$

Show that these operators satisfy the canonical anticommutation relations for fermionic raising and lowering operators.
[15 marks]
(c) We now change the Hamiltonian of the fermionic system slightly by including a coupling between the beginning and end of the chain (so it is effectively a ring). To write this in a convenient way we define $c_{N}:=c_{0}$. The new Hamiltonian is $\tilde{H}=-2 J \sum_{l=0}^{N-1}\left(c_{l}^{\dagger} c_{l+1}-c_{l} c_{l+1}^{\dagger}\right)+h\left(2 N_{F}-N\right)$. Show that $\tilde{H}=-4 J \sum_{k=0}^{N-1} \cos (2 \pi k / N) d_{k}^{\dagger} d_{k}+h\left(2 N_{F}-N\right)$.
Find the energy of the ground state and first excited state of the system when $h>2 J>0$.
[15 marks]
2. A system of spinless (or spin polarized) fermions of mass m in one space dimension has the following Hamiltonian

$$
H=\sum_{k} \frac{\hbar^{2} k^{2}}{2 m} c_{k}^{\dagger} c_{k}+\sum_{k, k^{\prime}, q, n} \lambda_{n} q^{2 n} c_{k+q}^{\dagger} c_{k^{\prime}-q}^{\dagger} c_{k^{\prime}} c_{k}
$$

The fermions are confined to a line segment of length L with periodic boundary conditions. Hence the wave numbers k, k^{\prime} and q which appear are all integer multiples of $\frac{2 \pi}{L}$. The sum over n runs over all nonnegative integers and the λ_{n} are coupling constants.
(a) In this part, we set the coupling constants λ_{n} equal to zero for all n. Let $\left\{k_{1}, \ldots, k_{N}\right\}$ be a set of N wave numbers.
Show that the state $\prod_{i=1}^{N} c_{k_{i}}^{\dagger}|0\rangle$ is an eigenstate of H and find its energy.
[15 marks]
(b) We now consider the case where the λ_{n} may be nonzero for all $n \geq 0$. We treat the new nonzero terms in the Hamiltonian as a perturbation. Show that the correction to the energy of the states considered in part (a) in first order perturbation theory is given by

$$
\Delta E=-\sum_{k, k^{\prime} \in\left\{k_{1}, \ldots, k_{N}\right\}} \sum_{n=1}^{\infty} \lambda_{n}\left(k^{\prime}-k\right)^{2 n}
$$

[20 marks]
(c) We now consider a system which has $\lambda_{1}=V / L$ for some constant $V>0$ and $\lambda_{n}=0$ for $n>1$.
Calculate the expectation value of the energy per particle in the ground state of the non-interacting system, at large N. Express the result in terms of the mass m, the constant V and the particle density $n=\frac{N}{L}$
[15 marks]

