## Assignment 6: additional background

## Density operator/matrix

1) Pure state $|\psi\rangle \in \mathcal{H}$

$$
\rho=|\psi\rangle\langle\psi|
$$

Example: $|\psi\rangle=c_{0}|0\rangle+c_{1}|1\rangle$ :

$$
\begin{aligned}
\rho & =\left(c_{0}|0\rangle+c_{1}|1\rangle\right)\left(c_{0}^{*}\langle 0|+c_{1}^{*}\langle 1|\right) \\
& =\left|c_{0}\right|^{2}|0\rangle\langle 0|+c_{0} c_{1}^{*}|0\rangle\langle 1|+c_{0}^{*} c_{1}|1\rangle\langle 0|+\left|c_{1}\right|^{2}|1\rangle\langle 1| \\
& =\left(\begin{array}{cc}
\left|c_{0}\right|^{2} & c_{0} c_{1}^{*} \\
c_{0}^{*} c_{1} & \left|c_{1}\right|^{2}
\end{array}\right)
\end{aligned}
$$

2) Mixed state

$$
\rho=\sum_{i} p_{i} \rho_{i}=\sum_{i} p_{i}\left|\psi_{i}\right\rangle\left\langle\psi_{i}\right|
$$

Example:

$$
\begin{array}{ll}
p_{1}=0.4, & \left|\psi_{1}\right\rangle=(|0\rangle+i|1\rangle) / \sqrt{2} \\
p_{2}=0.6, & \left|\psi_{2}\right\rangle=|1\rangle:
\end{array}
$$

$$
\begin{aligned}
\rho & =0.4\left|\psi_{1}\right\rangle\left\langle\psi_{1}\right|+0.6\left|\psi_{2}\right\rangle\left\langle\psi_{2}\right| \\
& =0.4\left[\frac{1}{2}(|0\rangle\langle 0|-i|0\rangle\langle 1|+i|1\rangle\langle 0|+|1\rangle\langle 1|)\right]+0.6[|1\rangle\langle 1|] \\
& =0.2|0\rangle\langle 0|-0.2 i|0\rangle\langle 1|+0.2 i|1\rangle\langle 0|+0.8|1\rangle\langle 1| \\
& =\left(\begin{array}{cc}
0.2 & -0.2 i \\
0.2 i & 0.8
\end{array}\right)=\frac{1}{2}\left(\mathbb{I}+0 \sigma_{x}+0.4 \sigma_{y}-0.6 \sigma_{z}\right)
\end{aligned}
$$

## Reduced density operator

Suppose we have physical system consisting of the subsystems $A$ and $B$ whose joint state is described by the density matrix $\rho^{A B}$. The reduced density operator for the subsystem $A$ is

$$
\rho_{A}=\operatorname{tr}_{B} \rho^{A B}
$$

where $\operatorname{tr}_{B}$ is an operator map known as partial trace over system $B$. It is defined as

$$
\rho_{A}=\operatorname{tr}_{B}\left|a_{1} b_{1}\right\rangle\left\langle a_{2} b_{2}\right|=\operatorname{tr}_{B}\left(\left|a_{1}\right\rangle\left\langle a_{2}\right| \otimes\left|b_{1}\right\rangle\left\langle b_{2}\right|\right)=\left|a_{1}\right\rangle\left\langle a_{2}\right| \operatorname{tr}\left(\left|b_{1}\right\rangle\left\langle b_{2}\right|\right)
$$

where $\left|a_{1}\right\rangle$ and $\left|a_{2}\right\rangle$ are any two vectors in $A$, and $\left|b_{1}\right\rangle$ and $\left|b_{2}\right\rangle$ are any two vectors in $B . \operatorname{tr}\left(\left|b_{1}\right\rangle\left\langle b_{2}\right|\right)$ is the usual trace, so, using the completeness relation, we get

$$
\operatorname{tr}\left(\left|b_{1}\right\rangle\left\langle b_{2}\right|\right)=\sum_{k}\left\langle k \mid b_{1}\right\rangle\left\langle b_{2} \mid k\right\rangle=\sum_{k}\left\langle b_{2} \mid k\right\rangle\left\langle k \mid b_{1}\right\rangle=\left\langle b_{2}\right|\left(\sum_{k}|k\rangle\langle k|\right)\left|b_{1}\right\rangle=\left\langle b_{2} \mid b_{1}\right\rangle
$$

## Example

$$
\rho=\frac{1}{2}(|00\rangle\langle 00|+|00\rangle\langle 11|+|11\rangle\langle 00|+|11\rangle\langle 11|)
$$

The partial trace over the second qubit is

$$
\begin{aligned}
\rho_{1} & =\operatorname{tr}_{2}\left[\frac{1}{2}(|00\rangle\langle 00|+|00\rangle\langle 11|+|11\rangle\langle 00|+|11\rangle\langle 11|)\right] \\
& =\frac{1}{2}(|0\rangle\langle 0|\langle 0 \mid 0\rangle+|0\rangle\langle 1|\langle 1 \mid 0\rangle+|1\rangle\langle 0|\langle 0 \mid 1\rangle+|1\rangle\langle 1|\langle 1 \mid 1\rangle) \\
& =\frac{1}{2}(|0\rangle\langle 0|+|1\rangle\langle 1|)
\end{aligned}
$$

## Operator sum representation

is a representation of quantum operations in terms of the operators on the principal system only:

Let $\left|e_{k}\right\rangle$ be the orthonormal basis for the finite dimensional Hilbert space of the environment, and let $\rho=\left|e_{0}\right\rangle\left\langle e_{0}\right|$ be the initial (pure) state of the environment. Then we can express a quantum operation as

$$
\mathcal{E}(\rho)=\operatorname{tr}_{e n v}\left[U\left(\rho \otimes \rho_{e n v}\right) U^{\dagger}\right]=\sum_{k}\left\langle e_{k}\right| U\left(\rho \otimes\left|e_{0}\right\rangle\left\langle e_{0}\right|\right) U^{\dagger}\left|e_{k}\right\rangle=\sum_{k} E_{k} \rho E_{k}^{\dagger}
$$

where $E_{k}=\left\langle e_{k}\right| U\left|e_{o}\right\rangle$ is an operator on the Hilbert space of the principal system called an operation element of the quantum operation. They satisfy

$$
\sum_{k} E_{k}^{\dagger} E_{k}=\mathbb{I} .
$$

## Example:

Assume the system is one qubit in the state $\rho$, and the environment is one qubit in the initial state $|0\rangle$, and the unitary operation is $C N O T$ with the system as the control:

$$
\begin{aligned}
\mathcal{E}(\rho)= & \operatorname{tr}_{\text {env }}\left[U_{C N O T}(\rho \otimes|0\rangle\langle 0|) U_{C N O T}^{\dagger}\right] \\
= & \operatorname{tr}_{e n v}\left[\left(P_{0} \otimes I+P_{1} \otimes X\right)(\rho \otimes|0\rangle\langle 0|)\left(P_{0} \otimes I+P_{1} \otimes X\right)\right] \\
= & \operatorname{tr}_{e n v}\left[\left(P_{0} \otimes I\right)(\rho \otimes|0\rangle\langle 0|)\left(P_{0} \otimes I\right)+\left(P_{0} \otimes I\right)(\rho \otimes|0\rangle\langle 0|)\left(P_{1} \otimes X\right)\right. \\
& \left.\quad+\left(P_{1} \otimes X\right)(\rho \otimes|0\rangle\langle 0|)\left(P_{0} \otimes I\right)+\left(P_{1} \otimes X\right)(\rho \otimes|0\rangle\langle 0|)\left(P_{1} \otimes X\right)\right] \\
= & \operatorname{tr}_{e n v}\left[P_{0} \rho P_{0} \otimes|0\rangle\langle 0|+P_{0} \rho P_{1} \otimes|0\rangle\langle 0| X+P_{1} \rho P_{0} \otimes X|0\rangle\langle 0|+P_{1} \rho P_{1} \otimes X|0\rangle\langle 0| X\right] \\
= & \operatorname{tr}_{e n v}\left[P_{0} \rho P_{0} \otimes|0\rangle\langle 0|+P_{0} \rho P_{1} \otimes|0\rangle\langle 1|+P_{1} \rho P_{0} \otimes|1\rangle\langle 0|+P_{1} \rho P_{1} \otimes|1\rangle\langle 1|\right] \\
= & P_{0} \rho P_{0}\langle 0 \mid 0\rangle+P_{0} \rho P_{1}\langle 1 \mid 0\rangle+P_{1} \rho P_{0}\langle 0 \mid 1\rangle+P_{1} \rho P_{1}\langle 1 \mid 1\rangle \\
= & P_{0} \rho P_{0}+P_{1} \rho P_{1}
\end{aligned}
$$

## Assignment 7: background

## Problem 5:

The energy eigenstates of harmonic oscillator $|n\rangle$ :

$$
\hat{H}|n\rangle=\hbar \omega\left(n+\frac{1}{2}\right)|n\rangle
$$

A density operator for the state of harmonic oscillator in the representation given by the energy eigenstates

$$
\rho=\sum_{m=0}^{\infty} \sum_{n=0}^{\infty} \rho_{m n}|m\rangle\langle n| .
$$

The action of the Hamiltonian $\hat{H}=\hat{H}^{\dagger}$ onto the density matrix

$$
\begin{aligned}
& \hat{H} \rho=\sum_{m=0}^{\infty} \sum_{n=0}^{\infty} \rho_{m n} \hat{H}|m\rangle\langle n|=\sum_{m=0}^{\infty} \sum_{n=0}^{\infty} \hbar \omega\left(m+\frac{1}{2}\right) \rho_{m n}|m\rangle\langle n| \\
& \rho \hat{H}=\sum_{m=0}^{\infty} \sum_{n=0}^{\infty} \rho_{m n}|m\rangle\langle n| \hat{H}=\sum_{m=0}^{\infty} \sum_{n=0}^{\infty} \hbar \omega\left(n+\frac{1}{2}\right) \rho_{m n}|m\rangle\langle n| .
\end{aligned}
$$

The density operator elements in this representation become just multiplied by the Hamiltonian eigenvalues given by the corresponding eigenstate.

Commutator of the Hamiltonian and the density operator

$$
\begin{aligned}
{[\hat{H}, \rho] } & =\hat{H} \rho-\rho \hat{H}=\sum_{m=0}^{\infty} \sum_{n=0}^{\infty} \rho_{m n}(\hat{H}|m\rangle\langle n|-|m\rangle\langle n| \hat{H}) \\
& =\sum_{m=0}^{\infty} \sum_{n=0}^{\infty} \hbar \omega(m-n) \rho_{m n}|m\rangle\langle n| \\
& =\sum_{m=0}^{\infty} \sum_{n=0}^{\infty} \hbar \omega_{m n} \rho_{m n}|m\rangle\langle n|
\end{aligned}
$$

where $\omega_{m n}=\omega(m-n)$.
For any function of the commutator we will get

$$
f([\hat{H}, \rho])=\sum_{m=0}^{\infty} \sum_{n=0}^{\infty} f\left(\hbar \omega_{m n}\right) \rho_{m n}|m\rangle\langle n| .
$$

The Schrödinger equation for a density operator:
We start with the Schrödinger equation for a ket $|\psi\rangle$ and its adjoint $\langle\psi|$

$$
\frac{\mathrm{d}}{\mathrm{~d} t}|\psi\rangle=-\frac{i}{\hbar} H|\psi\rangle \quad \frac{\mathrm{d}}{\mathrm{~d} t}\langle\psi|=\frac{i}{\hbar}\langle\psi| H
$$

and combine these as follows

$$
\begin{aligned}
\frac{\mathrm{d} \rho}{\mathrm{~d} t} & =\frac{\mathrm{d}}{\mathrm{~d} t}|\psi\rangle\langle\psi|=\left(\frac{\mathrm{d}}{\mathrm{~d} t}|\psi\rangle\right)\langle\psi|+|\psi\rangle\left(\frac{\mathrm{d}}{\mathrm{~d} t}\langle\psi|\right) \\
& =-\frac{i}{\hbar}(H|\psi\rangle\langle\psi|-|\psi\rangle\langle\psi| H) \\
& =-\frac{i}{\hbar}(H \rho-\rho H) \\
& =-\frac{i}{\hbar}[H, \rho]
\end{aligned}
$$

This holds also when the state is mixed, i.e. $\rho=\sum_{i} p_{i} \rho_{i}$, as $\frac{\mathrm{d} \rho}{\mathrm{d} t}=\sum_{i} p_{i} \frac{\mathrm{~d} \rho_{i}}{\mathrm{~d} t}$.

## Unitary evolution of a density operator

$\rho(t)=e^{-\frac{i}{\hbar}[H, .] t} \rho(0)=\sum_{m=0}^{\infty} \sum_{n=0}^{\infty} e^{-i \omega(m-n) t} \rho_{m n}(0)|m\rangle\langle n|=\sum_{m=0}^{\infty} \sum_{n=0}^{\infty} e^{-i \omega_{m n} t} \rho_{m n}(0)|m\rangle\langle n|$
where the matrix elements transform as $\rho_{m n}(0) \rightarrow \rho_{m n}(t)=e^{-i \omega_{m n} t} \rho_{m n}(0)$.

This is completely equivalent to the expression

$$
\begin{aligned}
\rho(t) & =U \rho(0) U^{\dagger}=e^{-i H t / \hbar} \rho(0) e^{i H t / \hbar}=\sum_{m=0}^{\infty} \sum_{n=0}^{\infty} \rho_{m n}(0) e^{-i \omega\left(m+\frac{1}{2}\right) t}|m\rangle\langle n| e^{i \omega\left(n+\frac{1}{2}\right) t} \\
& =\sum_{m=0}^{\infty} \sum_{n=0}^{\infty} e^{-i \omega(m-n) t} \rho_{m n}(0)|m\rangle\langle n|=\sum_{m=0}^{\infty} \sum_{n=0}^{\infty} e^{-i \omega_{m n}} \rho_{m n}(0)|m\rangle\langle n|
\end{aligned}
$$

