
Assignment 5: selected solutions

Problem 1: Compare the computational complexity of classical algorithm for distin-
guishing the constant and balanced n-bit functions, implemented as an oracle, with
the complexity of the Deutsch-Jozsa quantum algorithm for the same problem.

Solution:
The n-bit function has 2n possible inputs. Classically, more than half of the inputs
needs to be tested to determine whether the function is constant of balanced, that is,
the function has to be evaluated 2n−1+1 times. On a quantum computer, the function
is for any n evaluated in 1 step as a unitary transformation applied to the state that
represents a uniform superposition of all possible input values.



Problem 2: Consider that the oracle for the Deutsch-Jozsa quantum algorithm with
two input qubits and one auxiliary qubit is given in the standard computational basis
by the following matrix

Û =



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1


.

Using the oracle above, calculate the standard matrix representation of the circuit
for the Deutsch-Jozsa algorithm, then determine what outcome is to be obtained
when measurement of the first two qubits is performed at the end of the circuit, and
determine from this result what type of function, whether constant or balanced, the
oracle implements.



Solution:

(H ⊗ H ⊗ 1̂)(U)(H ⊗ H ⊗ H)|001〉 =
1

25/2
×


1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1
1 0 −1 0 1 0 −1 0
0 1 0 −1 0 1 0 −1
1 0 1 0 −1 0 −1 0
0 1 0 1 0 −1 0 −1
1 0 −1 0 −1 0 1 0
0 1 0 −1 0 −1 0 1




1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1




1 1 1 1 1 1 1 1
1 −1 1 −1 1 −1 1 −1
1 1 −1 −1 1 1 −1 −1
1 −1 −1 1 1 −1 −1 1
1 1 1 1 −1 −1 −1 −1
1 −1 1 −1 −1 1 −1 1
1 1 −1 −1 −1 −1 1 1
1 −1 −1 1 −1 1 1 −1




0
1
0
0
0
0
0
0



=
1
√

2


0
0
0
0
0
0
1
−1

 =
1
√

2
(|110〉 − |111〉) = |11〉 ⊗

|0〉 − |1〉
√

2
.



Since the state of the first two qubits is

|11〉

their measurement will yield the result 1 for both qubits with the probability p = 1,
and hence the oracle computed a balanced function.



Problem 3: Determine the matrix representation of the inverse Fourier transform
given by the circuit:

!"

Solution:
The inverse QFT circuit is the following sequence of operations

(H ⊗ I)(controlled-S †21)(I ⊗ H)(S WAP).



(H ⊗ I)(controlled-S †21)(I ⊗ H)(S WAP)

This becomes in the matrix representation

1
2


1 0 1 0
0 1 0 1
1 0 −1 0
0 1 0 −1




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −i




1 1 0 0
1 −1 0 0
0 0 1 1
0 0 1 −1




1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 =
1
2


1 1 1 1
1 −i −1 i
1 −1 1 −1
1 i −1 −i

 .
The resulting matrix is indeed the inverse QFT:

1
4


1 1 1 1
1 −i −1 i
1 −1 1 −1
1 i −1 −i




1 1 1 1
1 i −1 −i
1 −1 1 −1
1 −i −1 i

 =
1
4


1 1 1 1
1 i −1 −i
1 −1 1 −1
1 −i −1 i




1 1 1 1
1 −i −1 i
1 −1 1 −1
1 i −1 −i

 = 1̂.



Problem 4: Consider the phase estimation algorithm. The state resulting from the
first stage of the algorithm is given as

|ψ〉 =
1
2

(
|0〉 + eπi|1〉

)
⊗

(
|0〉 + eπi/2|1〉

)
.

Apply the inverse Fourier transform from the previous problem to the state |ψ〉 in
the standard matrix representation, and determine the result of the phase estimation
algorithm, that is, the binary representation of the phase ϕ.



Solution:
The state

|ψ〉 =
1
2

(
|0〉 + eπi|1〉

)
⊗

(
|0〉 + eπi/2|1〉

)
=

1
2

(
|00〉 + eπi/2|01〉 + eπi|10〉 + e3πi/2|11〉

)
is in the standard matrix representation given as

|ψ〉 =
1
2


1

eπi/2

eπi

e3πi/2

 .



The action of the inverse QFT onto the given state produces

1
4


1 1 1 1
1 −i −1 i
1 −1 1 −1
1 i −1 −i




1
eπi/2

eπi

e3πi/2

 =
1
4


1 1 1 1
1 −i −1 i
1 −1 1 −1
1 i −1 −i




1
i
−1
−i

 =


0
1
0
0

 .
which is the basis vector 01.

The result of the phase estimation algorithm is the phase given in the binary fraction
notation as ϕ = .01 = 2−1.0 + 2−2.1 which is ϕ = 0.25 in the decadic notation.



Problem 5: Consider the Grover algorithm for searching unstructured two-qubit database.
Choose the marked state in the database to be |10〉, and show by an explicit calcula-
tion that a single application of the Grover iteration returns the marked state, that is,
the final state after the Grover iteration is |ψ〉 = |10〉.

Solution:

|s〉 =
1
2

(|00〉 + |01〉 + |10〉 + |11〉)

Uω|s〉 =
1
2

(1̂ − 2|10〉〈10|)(|00〉 + |01〉 + |10〉 + |11〉) =
1
2

(|00〉 + |01〉 − |10〉 + |11〉)



UsUω|s〉 = (2|s〉〈s| − 1̂)Uω|s〉

=
1
2

(−|00〉〈00| + |00〉〈01| + |00〉〈10| + |00〉〈11| + |01〉〈00| − |01〉〈01| + |01〉〈10| + |01〉〈11| +

|10〉〈00| + |10〉〈01| − |10〉〈10| + |10〉〈11| + |11〉〈00| + |11〉〈01| + |11〉〈10| − |11〉〈11|)

×

[
1
2

(|00〉 + |01〉 − |10〉 + |11〉)
]

= |10〉.

Single application of the Grover iteration recovers the marked state exactly.



Quantum search algorithm (Grover)

Consider an unsorted database with N = 2n entries where n is the number of qubits.
The problem is to determine the index of the database entry which satisfies some
search criterion, that is, to identify the marked state |ω〉.

We are provided with oracle access to a unitary operator, Uω, which acts as follows:

Uω|ω〉 = −|ω〉

Uω|x〉 = |x〉, for all x , ω.

The operator Uω can be rewritten as

Uω = Î − 2|ω〉〈ω|

(Î − 2|ω〉〈ω|) |ω〉 = |ω〉 − 2|ω〉〈ω|ω〉 = −|ω〉,

(Î − 2|ω〉〈ω|) |x〉 = |x〉 − |ω〉〈ω|x〉 = |x〉.



Let |s〉 denote the uniform superposition over all states

|s〉 =
1
√

N

N−1∑
x=0
|x〉

We introduce the Grover diffusion operator

Us = 2|s〉〈s| − Î.

The following computations show what happens in the first iteration:

〈s|ω〉 =
1
√

N

〈s|s〉 = N
1
√

N
·

1
√

N
= 1

Uω|s〉 = (Î − 2|ω〉〈ω|)|s〉 = |s〉 − 2|ω〉〈ω|s〉 = |s〉 −
2
√

N
|ω〉



Us

(
|s〉 −

2
√

N
|ω〉

)
=

(
2|s〉〈s| − Î

) (
|s〉 −

2
√

N
|ω〉

)
= 2|s〉〈s|s〉 − |s〉 −

4
√

N
|s〉〈s|ω〉 +

2
√

N
|ω〉

= 2|s〉 − |s〉 −
4
√

N
·

1
√

N
|s〉 +

2
√

N
|ω〉 = |s〉 −

4
N
|s〉 +

2
√

N
|ω〉

=
N − 4

N
|s〉 +

2
√

N
|ω〉

After the iteration, the probability to measure the marked state has increased from
|〈ω|s〉|2 = 1

N to

|〈ω|UsUω|s〉|2 =

∣∣∣∣∣∣ 1
√

N
·

N − 4
N

+
2
√

N

∣∣∣∣∣∣2 =
(3N − 4)2

N3 = 9
(
1 −

4
3N

)2
·

1
N
.



1. Initialize the system to the state

|s〉 =
1
√

N

N−1∑
x=0
|x〉

2. Perform the following Grover iteration r(N) times where r(N) is asymptotically
O(
√

N):

a) apply the operator Uω;
b) apply the operator Us.

3. Perform the measurement Ω. The measurement result will be λω with the prob-
ability approaching 1 for N >> 1. From λω, ω may be obtained.



Supporting material:
Density operators

An operator

ρ =
∑

i
pi |ψi〉〈ψi|

is the density operator associated to some ensemble {pi, |ψi〉} iff it satisfies the con-
ditions:

1. Trace condition: tr ρ = 1.

2. Positivity: ρ is a positive operator.



Reduced density operator

Suppose we have a physical system A and B whose state is described by the density
matrix ρAB. The reduced density operator for system A is

ρA = tr B ρ
AB

where tr B is an operator map known as partial trace over system B. It is defined as

ρA = tr B (|a1〉〈a2| ⊗ |b1〉〈b2|) = |a1〉〈a2| tr (|b1〉〈b2|)

where |a1〉 and |a2〉 are any two vectors in A, and |b1〉 and |b2〉 are any two vectors in
B. tr (|b1〉〈b2|) is the usual trace, so, using the completeness relation, we get

tr (|b1〉〈b2|) =
∑

k
〈k|b1〉〈b2|k〉 =

∑
k
〈b2|k〉〈k|b1〉 = 〈b2|

∑
k
|k〉〈k|

 |b1〉 = 〈b2|b1〉



Problem 2: Example

Assume the system is one qubit in the state ρ, and the environment is one qubit in
the initial state |0〉, and the unitary operation is CNOT with the system as the control:

E(ρ) = tr env
[
UCNOT (ρ ⊗ |0〉〈0|) U†CNOT

]
= tr env

[(
P0 ⊗ I + P1 ⊗ X

)
(ρ ⊗ |0〉〈0|)

(
P0 ⊗ I + P1 ⊗ X

)]
= tr env

[(
P0 ⊗ I

)
(ρ ⊗ |0〉〈0|)

(
P0 ⊗ I

)
+

(
P0 ⊗ I

)
(ρ ⊗ |0〉〈0|) (P1 ⊗ X)

+ (P1 ⊗ X) (ρ ⊗ |0〉〈0|)
(
P0 ⊗ I

)
+ (P1 ⊗ X) (ρ ⊗ |0〉〈0|) (P1 ⊗ X)

]
= tr env

[
P0ρP0 ⊗ |0〉〈0| + P0ρP1 ⊗ |0〉〈0|X + P1ρP0 ⊗ X|0〉〈0| + P1ρP1 ⊗ X|0〉〈0|X

]
= tr env

[
P0ρP0 ⊗ |0〉〈0| + P0ρP1 ⊗ |0〉〈1| + P1ρP0 ⊗ |1〉〈0| + P1ρP1 ⊗ |1〉〈1|

]
= P0ρP0 〈0|0〉 + P0ρP1 〈1|0〉 + P1ρP0 〈0|1〉 + P1ρP1 〈1|1〉

= P0 ρ P0 + P1 ρ P1


