
Assignment 3: selected solutions

Problem 1: Show that the norm of a quantum state given by the density matrix ρ

remains unchanged if the state is subject to a unitary transformation Û.

Solution: Use the cyclic permutation invariance of the trace operation

tr (UρU†) = tr (U†Uρ) = tr (ρ).



Problem 2: Derive the solution of the Schrödinger equation for the system charac-
terised by a Hamiltonian that is time independent, and show that the resulting evolu-
tion operator is unitary if the Hamiltonian is self-adjoint.
Solution: use the separation of variables and integration
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Problem 3: Using the Taylor expansion, show that the evolution operator generated
by the Hamiltonian Ĥ = ~~n · ~σ/2 can be written as follows:

e−itĤ/~ = cos
( t
2

)
Î − i sin

( t
2

)
~n · ~σ

where ~n =
(
nx, ny, nz

)
is a real unit vector and ~σ is the vector of Pauli matrices.

Solution: use properties of the Pauli matrices, specifically that they square to the
identity and that they anticommute, to show

(~n · ~σ)2 = (nxσx + nyσy + nzσz)2

= (n2
x + n2

y + n2
z )Î + nxny(σxσy + σyσx) + nxnz(σxσz + σzσx) + nynz(σyσz + σzσy)
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and consequently, (~n · ~σ)2n = Î and (~n · ~σ)2n+1 = ~n · ~σ for all n ∈ N.



Now, use the Taylor series expansion to show
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Problem 4: Calculate the effect that a single qubit evolution operator U(t), generated
by the Hamiltonian Ĥ = ~σx/2 has on a general single qubit pure state in the Bloch
representation.

Solution: Evaluate the action of the evolution operator as follows

ρ(t) = Ût ρ(0) Û†t = e−iσxt/2 ρ(0) eiσxt/2
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Î + rx σx + (ry cos t − rz sin t) σy + (ry sin t + rz cos t) σz

]
.



Problem 5: Calculate the effect that a single qubit evolution operator U(t), generated
by the Hamiltonian given by Ĥ = ~σz/2 has on a general single qubit pure state in
the Bloch representation.

Solution: Evaluate the action of the evolution operator as follows

ρ(t) = Ût ρ(0) Û†t = e−iσzt/2 ρ(0) eiσzt/2
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Î − i sin
t
2
σz

) (
rxσx + ryσy + rzσz

) (
cos

t
2

Î + i sin
t
2
σz

)]
=

1
2

[
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]
.



Problem 6: Find the global phase with which one needs to multiply the Hadamard
gate to convert it from an element of the group U(2) to an element of the group
S U(2).

Solution: The Hadamard gate has det H = −1, and hence the global phase is
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Problem 7: Propose a suitable Hamiltonian and determine a duration for which the
Hamiltonian has to be turned on to generate the evolution operator which is equiva-
lent up to a global phase to the Hadamard gate.

Solution: Up to the global phase, determined in the previous problem, we can expand
the Hadamard gate into a superposition of the Pauli matrices
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and using the expression
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Î − i sin

( t
2

)
~n · ~σ

we get

H = eiπ/2
[
0 − i

(
σx + σz
√

2

)]

= eiπ/2
[
cos

π

2
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Problem 8: Show by calculation in the Bloch representation that the bit-flip X and the
Hadamard gate H transform the Bloch vector of the state |ψ〉 = 1√

2
(|0〉 − i|1〉) in the

same way.

Solution: X = σx and use the properties of Pauli matrices
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.



Problem 9: Calculate the local invariants g1, g2 and g3 for the two-qubit operations
CNOT12 and CNOT21 and determine whether these are in the same local equiva-
lence class.

Solution: CNOT12
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Using the local invariants defined for U(4) and det(U) = −1, we get

g1 =
Re

[
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]
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= 0, g2 =
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[
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The transformation of CNOT21 into the magic Bell basis produces the
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1
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which gives the same Maklin matrix as CNOT12
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and thus the same local invariants
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Projective measurement

A single measurement of an observable M̂ can only yield one of its eigenvalues λm

which satisfy the eigenvalue equation

M̂|ψm〉 = λm|ψm〉

where |ψm〉 is the eigenvector associated with the eigenvalue λm.

The measurement operators correspond to the projectors P̂m = |ψm〉〈ψm| onto eigen-
subspaces, which are associated with eigenvalues λm and are spanned by the cor-
responding eigenvectors |ψm〉, in the spectral decomposition of the observable M̂:

M̂ =
∑
m
λm|ψm〉〈ψm| =

∑
m
λmP̂m.



If the state of the system before the measurement is |φ〉, then the probability that the
result λm occurs is

pm = 〈φ|P̂
†
mP̂m|φ〉 = 〈φ|P̂2

m|φ〉 = 〈φ|P̂m|φ〉

and the state immediately after the measurement is

|ψ〉 =
P̂m|φ〉

||P̂m|φ〉||
=
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〈φ|P̂†mP̂m|φ〉

=
P̂m|φ〉√
〈φ|P̂m|φ〉

=
P̂m|φ〉
√
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Projective measurement allows us to easily calculate the expectation value of an
observable M̂ for the system in the state |φ〉

< M̂ >= 〈φ|M̂|φ〉 = 〈φ|

∑
m
λmP̂m

 |φ〉 =∑
m
λm〈φ|P̂m|φ〉 =

∑
m
λmpm



Projective measurements on states given by density matrices

Consider a single qubit pure state |φ〉 = c0|0〉 + c1|1〉:

ρ̂ = |φ〉〈φ| = |c0|
2|0〉〈0| + c0c∗1|0〉〈1| + c∗0c1|1〉〈0| + |c1|

2|1〉〈1|.

The norm is calculated as the trace of the density matrix, that is, the sum of its
diagonal matrix elements

tr ρ̂ = 〈0|ρ̂|0〉 + 〈1|ρ̂|1〉 = |c0|
2 + |c1|

2 = 1.

The operators for a measurement in the standard computational basis

P̂0 = |0〉〈0|, P̂1 = |1〉〈1|.

the probabilities of the measurement results 0 and 1:

p0 = tr
(
P̂0|φ〉〈φ|P̂

†

0

)
= tr

(
P̂0ρ̂P̂†0

)
= tr

(
P̂0ρ̂P̂0

)
= tr

(
P̂2

0ρ̂
)
= tr

(
P̂0ρ̂

)
,

p1 = tr
(
P̂1ρ̂P̂†1

)
= tr

(
P̂1ρ̂

)
.



and the states after the measurement:

ρ0 =
P̂0ρ̂P̂†0

tr (P̂0ρ̂P̂†0)
=

P̂0ρ̂P̂0

tr (P̂0ρ̂)
,

ρ1 =
P̂1ρ̂P̂†1

tr (P̂1ρ̂P̂†1)
=

P̂1ρ̂P̂1

tr (P̂1ρ̂)
,

Single-qubit measurements on multi-qubit systems
Example: measurement operators for measurements of the second qubit in the stan-
dard computational basis on a two-qubit system:

P̂(2)
0 = 1̂ ⊗ P̂0 = 1̂ ⊗ |0〉〈0|,

P̂(2)
1 = 1̂ ⊗ P̂1 = 1̂ ⊗ |1〉〈1|.

where 1̂ is a 2 × 2 unit matrix acting on the first qubit which is not being measured.


