Assignment 3: selected solutions

Problem 1: Show that the norm of a quantum state given by the density matrix p
remains unchanged if the state is subject to a unitary transformation U.

Solution: Use the cyclic permutation invariance of the trace operation

tr (UpU") = tr (UTUp) = tr (p).



Problem 2: Derive the solution of the Schrodinger equation for the system charac-
terised by a Hamiltonian that is time independent, and show that the resulting evolu-
tion operator is unitary if the Hamiltonian is self-adjoint.

Solution: use the separation of variables and integration
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Problem 3: Using the Taylor expansion, show that the evolution operator generated
by the Hamiltonian H = #it - ¢/2 can be written as follows:
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where 71 = (nx, ny, nz) is a real unit vector and & is the vector of Pauli matrices.

Solution: use properties of the Pauli matrices, specifically that they square to the
identity and that they anticommute, to show

(7 - 5‘)2 = (nyox + nyoy + nZO'Z)2
= (71)2C + n% + ng)IA + Ny (0 30y + 0y0y) + Nxnz (0 x0; + 0;0%) + nyny(oyo; + 0;07)
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and consequently, (7 - #*" = [ and (7 - #*"*! = - & for all n € N.



Now, use the Taylor series expansion to show
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Problem 4: Calculate the effect that a single qubit evolution operator U(t), generated
by the Hamiltonian A = %io/2 has on a general single qubit pure state in the Bloch
representation.

Solution: Evaluate the action of the evolution operator as follows

o) = U; p(0) []: = ¢TITx2 () (il
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Problem 5: Calculate the effect that a single qubit evolution operator U(t), generated
by the Hamiltonian given by H = 7io,/2 has on a general single qubit pure state in
the Bloch representation.

Solution: Evaluate the action of the evolution operator as follows

o) = U, p(0) UZ = ¢mi02t/2 ) (i02/2
- - t . t
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Problem 6: Find the global phase with which one needs to multiply the Hadamard
gate to convert it from an element of the group U(2) to an element of the group
SUQ).

Solution: The Hadamard gate has detH = -1, and hence the global phase is
Vdet H = ¢/2, We can rewrite the gate as
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Problem 7: Propose a suitable Hamiltonian and determine a duration for which the
Hamiltonian has to be turned on to generate the evolution operator which is equiva-
lent up to a global phase to the Hadamard gate.

Solution: Up to the global phase, determined in the previous problem, we can expand
the Hadamard gate into a superposition of the Pauli matrices
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and using the expression

we get

where ny = n;
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Problem 8: Show by calculation in the Bloch representation that the bit-flip X and the
Hadamard gate H transform the Bloch vector of the state |¢) = \%(lO) —i|1)) in the
same way.

Solution: X = o, and use the properties of Pauli matrices

XpXT = O'Xpax:%[[A+0'x(rx0'x+ry0'y+rZO'Z)o'x] :1[f+rx0'x—ry0'y—rzaz].
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For the Hadamard gate, use H = %Fz(ax +0)
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Problem 9: Calculate the local invariants g1, g> and g3 for the two-qubit operations
CNOT{, and CNOT>; and determine whether these are in the same local equiva-
lence class.

Solution: CNOT (>
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Using the local invariants defined for U(4) and det(U) = —1, we get
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The transformation of CNOT> into the magic Bell basis produces the
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Projective measurement

A single measurement of an observable M can only yield one of its eigenvalues A,
which satisfy the eigenvalue equation

M|wm> — /lme)

where |y ,;,) is the eigenvector associated with the eigenvalue A,,.

The measurement operators correspond to the projectors Py, = |y, ){¥m| Onto eigen-
subspaces, which are associated with eigenvalues 4,, and are spanned by the cor-
responding eigenvectors |,,,), in the spectral decomposition of the observable M:

M = Z Amlym»XWml = Z /lum-



If the state of the system before the measurement is |¢), then the probability that the
result A, occurs is

P = (D|P) Prld) = (BIP216) = ($|Ppld)

and the state immediately after the measurement is
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Projective measurement allows us to easily calculate the expectation value of an
observable M for the system in the state |¢)
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Projective measurements on states given by density matrices

Consider a single qubit pure state |¢) = cgl|0) + c1]1):

p = 16)(@| = lcol10)0] + coclOX(1] + cierl140] + ley P11
The norm is calculated as the trace of the density matrix, that is, the sum of its
diagonal matrix elements

trp = (O}plO) + (1[pl1) = leol® + leg]* = 1.
The operators for a measurement in the standard computational basis
Po = 100, Py = 11)1].
the probabilities of the measurement results 0 and 1:

A

po = tr (Polp)dIP]) = tr (PopP)) = tr (PopPo) = r (P2p) = tr (Pp).
p1 = tr (ﬁlﬁpi) = tr (plﬁ) .



and the states after the measurement:

_ PO/SPZ) _ PopPy
- (PopPl)  w(Pop)
_ PPl pyppy
i (PipPTy  w(Pip)

Single-qubit measurements on multi-qubit systems
Example: measurement operators for measurements of the second qubit in the stan-
dard computational basis on a two-qubit system:

PP = 10 Py=10)0
PP = feb =1enxIl

where 1 is a 2 x 2 unit matrix acting on the first qubit which is not being measured.



