Assignment 2: selected solutions

I. Quantum circuits and protocols

Problem 1:

Determine whether the Hadamard gate is self-adjoint, unitary or projection operator

and show the net result of the following sequences of the single qubit gates: (i) HXH
(i) HZH.

Solution: The Hadamard gate H is self-adjoint and unitary: H = H', HH = 1.
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Problem 2:
Calculate to what matrix in the standard computational representation the circuits
(CNOT1»)(CNOT>1)(CNOT,) corresponds.

Solution:

(CNOT12)(CNOT51)(CNOT») = = SWAP
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Problem 3:
Verify in the standard matrix representation that

CNOT>1 = (H; ® Hy))(CNOT15)(H; ® H»).
Draw the circuit as a quantum circuit diagram.

Solution:
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Problem 4:

Construct the circuits to generate all Bell states from the fiducial initial two-qubit state
|00) and construct a quantum circuit that transforms the Bell states into the standard
computational basis states.
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Problem 5:
Formulate a circuit to generate the Greenberger-Horne-Zeilinger (GHZ) state |y) =
%0000) +[111)).

Solution:
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Problem 6:
Write down the circuit (S WAP)(H»>)(CS»1)(H7) in the standard matrix representation.
Draw the circuit as a quantum circuit diagram.

Solution:

1 00O 1 1 0 O 1 000 1 0 1 1 1 1
100101—100 0100 0101_111—1
210 1 0 O 0O 0 1 1 0010 1 0 -1 211 -1 1

0O00O0OT1)Lo 0 1 -1 O0O0  :i)J)LO1 0 -1 1 —-i -1




Il. Quantum states

Problem 4.
Determine whether the state |y) = %(|00) +|01) + [10) —|11)) is separable or entan-
gled using the Schmidt decomposition.

Solution:
1 1 1 1
apo = 5, 4o1 = 7,410 = 3,411 = 73

{1 1 1 1 19
i1 _( 2
ad ‘4(1 —1)(1 —1)‘(0 %)

This matrix is already diagonal. There are two non-zero Schmidt coefficients and
thus the Schmidt number is 2, and the state is entangled.



Pauli matrices
(01 [0 —i (1 O
9x=\10) 97 i o) 9“7 o -1

Any 2x2 matrix can be written as a linear combination of the matrices {1, oy, oy, 07;}.

Properties:
The Pauli matrices are both hermitian and unitary 0'% = 0% = 0'% = 1, and their
products are

Ox0y = 107, Oy0; = 07y, 070 x = I07y.

Notice that for a # B8, where a,8 = x,y, z, they satisfy

O-alo-ﬁa-a — _O-ﬁ.



Pauli matrices anti-commute
{ox, 0y} = 0x0y +0yox = {0y, 0} ={o;, 0% =0
and satisfy the commutation relations

[O‘x, O'y] = 2io, [O'y, O'Z] =2ioy, |0z 0x] = 2ioy.

They are traceless and their determinant is —1

trox=troy=tro; = 0



Taylor expansion of single-qubit evolution operators
Assignment 3, Problem 3
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To complete the solution will require:
e properties of Pauli matrices, and
e Taylor expansions of trigonometric functions.



Lie groups U(4) and SU(4)

U(4) is the group of unitary 4 x 4 matrices or operators, and S U(4) is the group of
unitary 4 x 4 matrices of the unit determinant. Elements u € U(4) can be expressed
in terms of elements g € SU(4):

U = eicxg _ (eiai) g
where 1 is a 4 x 4 unit matrix. Considering the determinant of the product of two nx n
matrices A and B, and using det(AB) = det A det B, we get

detu = det (eio‘g) = det [(ei“i>g] — det (eiai)detg _ ida

from which we get in the two-qubit case
u

\/4 det u.

g:



Local invariants
1) Unitary transformation of any U € S U(4) into the Bell basis

Up = ULUUQ = Ul lUgULAUQU lUg = 01F 0y,

1 0 0 i

110 i 1 O

where UQ = % 0i -1 0
1 0 0 —i

2) Constructing the Makhlin matrix
m=UkUp = 0} FOT01F0, = 0T F?0,

3) Computing the local invariants

g1 = 1—16Re [tr 2(m)], gy = 1—161m [tr 2(m)], g3 = %[tr 2(m) —tr (mz)] .



For general two-qubit unitary matrices U € U(4) whose determinants are any com-
plex number of unit modulus, we define the local invariants as
Re|tr(m)] Im [t (m))| |tr2Gm) — tr (m?)]

16det(U) ~ %27 16det(U) © %37 4detU)

81

Examples:
1) Identity/unit matrix 1 € SU(4)
_ rta _ g/t _ 1
Up = UQIUQ = UQUQ =1
m = U Ug=1

g1 = —Re [tr (m)] =1, g = 1—161m [tr (m)] = g3 = %[trz(m) —tr (mz)] -



2) The operation (H1 ® Hy) e SUR)®@SU(2) c SU4)

1INV(1 1 1 1Y10 i
s 1 ofl1 =1 1 =1lloi 1 o
UB‘UQ(H1®H2)UQ‘4 1—10 11 =1 =1llo i =1 o
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7. loo o 1|loo o 1| o100
m = UgUs=06 0 1 0lloo -1t 0l7loo1o0
o010 0J)lo1 0 o 000 1
g1 = L re r2em)| =1, g :ilm[trQ(m)]:o g :l[trz(m)—tr(mz)]:
1 16 27 16 837y

These values of the invariants show that the single-qubit operation (H{®H») is locally
equivalent to the identity operator 1 studied in the previous example. Indeed all the
elements of SU(2) ® SU(2) are in the local equivalence class of the identity [1]



3) Controlled phase-flip CPHASE

1 0 0 1100 0Y10 O
o 110 - i offo10 0|0 i 1
Up = UplCPHASEWo =210 1 1 olloo1 o llo i -1
0 0 ilooo-1Jl10 0
00 0 —\(0 0 0 i 100 0
7. lo-1tooffo-1oo0o| |0 100
mo=UgUs=1g 9 1 0llo o 107l 0 01 0
i 00 0Jl=i 0 00 0 00 —1

Using the local invariants defined for U(4) and det(U) = —1, we get

Re tr2(m)| Im [tr2(m)] |t 2(m) — 1w (m?)]
$17 Todew ) - 827 Teaew) - BT aden)




