Assignment 2: selected solutions

I. Quantum circuits and protocols

Problem 1:
Determine whether the Hadamard gate is self-adjoint, unitary or projection operator, and show the net result of the following sequences of the single qubit gates: (i) $H X H$,
(ii) $H Z H$.

Solution: The Hadamard gate H is self-adjoint and unitary: $H=H^{\dagger}, H H=\hat{1}$.

$$
\begin{aligned}
& H X H=\frac{1}{2}\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right)\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right)=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)=Z, \\
& H Z H=H H X H H=X .
\end{aligned}
$$

Problem 2:
Calculate to what matrix in the standard computational representation the circuits $\left(\right.$ CNOT $\left._{12}\right)\left(\right.$ CNOT $\left._{21}\right)\left(\right.$ CNOT $\left._{12}\right)$ corresponds.

Solution:

$$
\left(\text { CNOT }_{12}\right)\left(\text { CNOT }_{21}\right)\left(\text { CNOT }_{12}\right)=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)=S W A P
$$

Problem 3:
Verify in the standard matrix representation that

$$
\text { CNOT }_{21}=\left(H_{1} \otimes H_{2}\right)\left(\text { CNOT }_{12}\right)\left(H_{1} \otimes H_{2}\right) .
$$

Draw the circuit as a quantum circuit diagram.
Solution:
$\left(H_{1} \otimes H_{2}\right)\left(C N O T_{12}\right)\left(H_{1} \otimes H_{2}\right)=\frac{1}{4}\left(\begin{array}{cccc}1 & 1 & 1 & 1 \\ 1 & -1 & 1 & -1 \\ 1 & 1 & -1 & -1 \\ 1 & -1 & -1 & 1\end{array}\right)\left(\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0\end{array}\right)\left(\begin{array}{cccc}1 & 1 & 1 & 1 \\ 1 & -1 & 1 & -1 \\ 1 & 1 & -1 & -1 \\ 1 & -1 & -1 & 1\end{array}\right)$

$=\left(\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0\end{array}\right)=$ CNOT $_{21}$.

Problem 4:
Construct the circuits to generate all Bell states from the fiducial initial two-qubit state $|00\rangle$ and construct a quantum circuit that transforms the Bell states into the standard computational basis states.

Solution:

$$
\begin{array}{ll}
\left|\beta_{00}\right\rangle=\frac{|00\rangle+|11\rangle}{\sqrt{2}} & \left(\text { CNOT }_{12}\right)\left(H_{1}\right) \\
\left|\beta_{01}\right\rangle=\frac{|01\rangle+|10\rangle}{\sqrt{2}} & \left(X_{1}\right)\left(\text { CNOT }_{12}\right)\left(H_{1}\right) \\
\left|\beta_{10}\right\rangle=\frac{|00\rangle-|11\rangle}{\sqrt{2}} & \left(Z_{1}\right)\left(\text { CNOT }_{12}\right)\left(H_{1}\right) \\
\left|\beta_{11}\right\rangle=\frac{|01\rangle-|10\rangle}{\sqrt{2}} & \left(Z_{1}\right)\left(X_{1}\right)\left(\text { CNOT }_{12}\right)\left(H_{1}\right)
\end{array}
$$

Problem 5:
Formulate a circuit to generate the Greenberger-Horne-Zeilinger (GHZ) state $|\psi\rangle=$ $\frac{1}{\sqrt{2}}(|000\rangle+|111\rangle)$.

Solution:

$$
|\psi\rangle=\frac{1}{\sqrt{2}}(|000\rangle+|111\rangle) \quad\left(\text { CNOT }_{13}\right)\left(\text { CNOT }_{12}\right)\left(H_{1}\right)
$$

Problem 6:
Write down the circuit $(S W A P)\left(H_{2}\right)\left(C S_{21}\right)\left(H_{1}\right)$ in the standard matrix representation. Draw the circuit as a quantum circuit diagram.

Solution:
$\frac{1}{2}\left(\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1\end{array}\right)\left(\begin{array}{cccc}1 & 1 & 0 & 0 \\ 1 & -1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & -1\end{array}\right)\left(\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & i\end{array}\right)\left(\begin{array}{cccc}1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & -1 & 0 \\ 0 & 1 & 0 & -1\end{array}\right)=\frac{1}{2}\left(\begin{array}{cccc}1 & 1 & 1 & 1 \\ 1 & i & -1 & -i \\ 1 & -1 & 1 & -1 \\ 1 & -i & -1 & i\end{array}\right)$

II. Quantum states

Problem 4:
Determine whether the state $|\psi\rangle=\frac{1}{2}(|00\rangle+|01\rangle+|10\rangle-|11\rangle)$ is separable or entangled using the Schmidt decomposition.

Solution:

$$
\begin{aligned}
& a_{00}=\frac{1}{2}, a_{01}=\frac{1}{2}, a_{10}=\frac{1}{2}, a_{11}=-\frac{1}{2} \\
& a a^{\dagger}=\frac{1}{4}\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right)\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right)=\left(\begin{array}{cc}
\frac{1}{2} & 0 \\
0 & \frac{1}{2}
\end{array}\right)
\end{aligned}
$$

This matrix is already diagonal. There are two non-zero Schmidt coefficients and thus the Schmidt number is 2 , and the state is entangled.

Pauli matrices

$$
\sigma_{x}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \quad \sigma_{y}=\left(\begin{array}{rr}
0 & -i \\
i & 0
\end{array}\right) \quad \sigma_{z}=\left(\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right)
$$

Any 2×2 matrix can be written as a linear combination of the matrices $\left\{I, \sigma_{x}, \sigma_{y}, \sigma_{z}\right\}$.

Properties:

The Pauli matrices are both hermitian and unitary $\sigma_{x}^{2}=\sigma_{y}^{2}=\sigma_{z}^{2}=\hat{1}$, and their products are

$$
\sigma_{x} \sigma_{y}=i \sigma_{z}, \quad \sigma_{y} \sigma_{z}=i \sigma_{x}, \quad \sigma_{z} \sigma_{x}=i \sigma_{y}
$$

Notice that for $\alpha \neq \beta$, where $\alpha, \beta=x, y, z$, they satisfy

$$
\sigma_{\alpha} \sigma_{\beta} \sigma_{\alpha}=-\sigma_{\beta}
$$

Pauli matrices anti-commute

$$
\left\{\sigma_{x}, \sigma_{y}\right\}=\sigma_{x} \sigma_{y}+\sigma_{y} \sigma_{x}=\left\{\sigma_{y}, \sigma_{z}\right\}=\left\{\sigma_{z}, \sigma_{x}\right\}=0
$$

and satisfy the commutation relations

$$
\left[\sigma_{x}, \sigma_{y}\right]=2 i \sigma_{z}, \quad\left[\sigma_{y}, \sigma_{z}\right]=2 i \sigma_{x}, \quad\left[\sigma_{z}, \sigma_{x}\right]=2 i \sigma_{y}
$$

They are traceless and their determinant is -1

$$
\begin{gathered}
\operatorname{tr} \sigma_{x}=\operatorname{tr} \sigma_{y}=\operatorname{tr} \sigma_{z}=0 \\
\operatorname{det} \sigma_{x}=\operatorname{det} \sigma_{y}=\operatorname{det} \sigma_{x}=-1 \\
(\vec{\sigma} \cdot \vec{A})(\vec{\sigma} \cdot \vec{B})=\vec{A} \cdot \vec{B}+i \vec{\sigma} \cdot(\vec{A} \times \vec{B})
\end{gathered}
$$

Taylor expansion of single-qubit evolution operators

Assignment 3, Problem 3

$$
\begin{aligned}
\hat{R}_{\vec{n}}(\theta) & =e^{-i \theta \vec{n} \cdot \vec{\sigma} / 2} \\
& =\sum_{k} \frac{(-i \theta \vec{n} \cdot \vec{\sigma} / 2)^{k}}{k!} \\
& =\sum_{k}(-i)^{k} \frac{(\theta / 2)^{k}}{k!}(\vec{k} \cdot \vec{\sigma})^{k}
\end{aligned}
$$

To complete the solution will require:

- properties of Pauli matrices, and
- Taylor expansions of trigonometric functions.

Lie groups $U(4)$ and $S U(4)$

$U(4)$ is the group of unitary 4×4 matrices or operators, and $S U(4)$ is the group of unitary 4×4 matrices of the unit determinant. Elements $u \in U(4)$ can be expressed in terms of elements $g \in S U(4)$:

$$
u=e^{i \alpha} g=\left(e^{i \alpha} \hat{1}\right) g
$$

where 1 is a 4×4 unit matrix. Considering the determinant of the product of two $n \times n$ matrices A and B, and using $\operatorname{det}(A B)=\operatorname{det} A \operatorname{det} B$, we get

$$
\operatorname{det} u=\operatorname{det}\left(e^{i \alpha} g\right)=\operatorname{det}\left[\left(e^{i \alpha} \hat{1}\right) g\right]=\operatorname{det}\left(e^{i \alpha} \hat{1}\right) \operatorname{det} g=e^{i 4 \alpha}
$$

from which we get in the two-qubit case

$$
g=\frac{u}{\sqrt[4]{\operatorname{det} u}} .
$$

Local invariants

1) Unitary transformation of any $U \in S U(4)$ into the Bell basis

$$
\begin{aligned}
U_{B} & =U_{Q}^{\dagger} U U_{Q}=U_{Q}^{\dagger} k_{1} U_{Q} U_{Q}^{\dagger} A U_{Q} U_{Q}^{\dagger} k_{2} U_{Q}=O_{1} F O_{2} \\
\text { where } U_{Q} & =\frac{1}{\sqrt{2}}\left(\begin{array}{cccc}
1 & 0 & 0 & i \\
0 & i & 1 & 0 \\
0 & i & -1 & 0 \\
1 & 0 & 0 & -i
\end{array}\right)
\end{aligned}
$$

2) Constructing the Makhlin matrix

$$
m=U_{B}^{T} U_{B}=O_{2}^{T} F O_{1}^{T} O_{1} F O_{2}=O_{2}^{T} F^{2} O_{2}
$$

3) Computing the local invariants

$$
g_{1}=\frac{1}{16} \operatorname{Re}\left[\operatorname{tr}^{2}(m)\right], \quad g_{2}=\frac{1}{16} \operatorname{Im}\left[\operatorname{tr}^{2}(m)\right], \quad g_{3}=\frac{1}{4}\left[\operatorname{tr}^{2}(m)-\operatorname{tr}\left(m^{2}\right)\right]
$$

For general two-qubit unitary matrices $U \in U(4)$ whose determinants are any complex number of unit modulus, we define the local invariants as

$$
g_{1}=\frac{\operatorname{Re}\left[\operatorname{tr}^{2}(m)\right]}{16 \operatorname{det}(U)}, \quad g_{2}=\frac{\operatorname{Im}\left[\operatorname{tr}^{2}(m)\right]}{16 \operatorname{det}(U)}, \quad g_{3}=\frac{\left[\operatorname{tr}^{2}(m)-\operatorname{tr}\left(m^{2}\right)\right]}{4 \operatorname{det}(U)} .
$$

Examples:

1) Identity/unit matrix $\hat{1} \in S U(4)$

$$
\begin{aligned}
U_{B} & =U_{Q}^{\dagger} \hat{1} U_{Q}=U_{Q}^{\dagger} U_{Q}=\hat{1} \\
m & =U_{B}^{T} U_{B}=\hat{1} \\
g_{1} & =\frac{1}{16} \operatorname{Re}\left[\operatorname{tr}^{2}(m)\right]=1, \quad g_{2}=\frac{1}{16} \operatorname{Im}\left[\operatorname{tr}^{2}(m)\right]=0, \quad g_{3}=\frac{1}{4}\left[\operatorname{tr}^{2}(m)-\operatorname{tr}\left(m^{2}\right)\right]=3 .
\end{aligned}
$$

2) The operation $\left(H_{1} \otimes H_{2}\right) \in S U(2) \otimes S U(2) \subset S U(4)$

$$
\begin{aligned}
& U_{B}=U_{Q}^{\dagger}\left(H_{1} \otimes H_{2}\right) U_{Q}=\frac{1}{4}\left(\begin{array}{cccc}
1 & 0 & 0 & 1 \\
0 & -i & -i & 0 \\
0 & 1 & -1 & 0 \\
-i & 0 & 0 & i
\end{array}\right)\left(\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & -1 & 1 & -1 \\
1 & 1 & -1 & -1 \\
1 & -1 & -1 & 1
\end{array}\right)\left(\begin{array}{cccc}
1 & 0 & 0 & i \\
0 & i & 1 & 0 \\
0 & i & -1 & 0 \\
1 & 0 & 0 & -i
\end{array}\right) \\
& m=U_{B}^{T} U_{B}=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & -1 & 0 \\
0 & 1 & 0 & 0
\end{array}\right)\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & -1 & 0 \\
0 & 1 & 0 & 0
\end{array}\right)=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \\
& g_{1}=\frac{1}{16} \operatorname{Re}\left[\operatorname{tr}^{2}(m)\right]=1, \quad g_{2}=\frac{1}{16} \operatorname{Im}\left[\operatorname{tr}^{2}(m)\right]=0, \quad g_{3}=\frac{1}{4}\left[\operatorname{tr}^{2}(m)-\operatorname{tr}\left(m^{2}\right)\right]=3 .
\end{aligned}
$$

These values of the invariants show that the single-qubit operation $\left(H_{1} \otimes H_{2}\right)$ is locally equivalent to the identity operator $\hat{1}$ studied in the previous example. Indeed all the elements of $S U(2) \otimes S U(2)$ are in the local equivalence class of the identity $[\hat{1}]$.
3) Controlled phase-flip CPHASE

$$
\begin{aligned}
U_{B} & =U_{Q}^{\dagger}(C P H A S E) U_{Q}=\frac{1}{2}\left(\begin{array}{cccc}
1 & 0 & 0 & 1 \\
0 & -i & -i & 0 \\
0 & 1 & -1 & 0 \\
-i & 0 & 0 & i
\end{array}\right)\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right)\left(\begin{array}{cccc}
1 & 0 & 0 & i \\
0 & i & 1 & 0 \\
0 & i & -1 & 0 \\
1 & 0 & 0 & -i
\end{array}\right) \\
m & =U_{B}^{T} U_{B}=\left(\begin{array}{cccc}
0 & 0 & 0 & -i \\
0 & -1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
i & 0 & 0 & 0
\end{array}\right)\left(\begin{array}{cccc}
0 & 0 & 0 & i \\
0 & -1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
-i & 0 & 0 & 0
\end{array}\right)=\left(\begin{array}{cccc}
-1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right)
\end{aligned}
$$

Using the local invariants defined for $U(4)$ and $\operatorname{det}(U)=-1$, we get

$$
g_{1}=\frac{\operatorname{Re}\left[\operatorname{tr}^{2}(m)\right]}{16 \operatorname{det}(U)}=0, \quad g_{2}=\frac{\operatorname{Im}\left[\operatorname{tr}^{2}(m)\right]}{16 \operatorname{det}(U)}=0, \quad g_{3}=\frac{\left[\operatorname{tr}^{2}(m)-\operatorname{tr}\left(m^{2}\right)\right]}{4 \operatorname{det}(U)}=1 .
$$

