
Assignment 2: selected solutions

I. Quantum circuits and protocols

Problem 1:
Determine whether the Hadamard gate is self-adjoint, unitary or projection operator,
and show the net result of the following sequences of the single qubit gates: (i) HXH,
(ii) HZH.

Solution: The Hadamard gate H is self-adjoint and unitary: H = H†, HH = 1̂.

HXH =
1
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HZH = HHXHH = X.

HXH Z= HZH X=



Problem 2:
Calculate to what matrix in the standard computational representation the circuits
(CNOT12)(CNOT21)(CNOT12) corresponds.

Solution:

(CNOT12)(CNOT21)(CNOT12) =

0
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1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

1
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Problem 3:
Verify in the standard matrix representation that

CNOT21 = (H1 ⌦ H2)(CNOT12)(H1 ⌦ H2).

Draw the circuit as a quantum circuit diagram.

Solution:

(H1 ⌦ H2)(CNOT12)(H1 ⌦ H2) =
1
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Problem 4:
Construct the circuits to generate all Bell states from the fiducial initial two-qubit state
|00i and construct a quantum circuit that transforms the Bell states into the standard
computational basis states.

Solution:

|�00i =
|00i + |11ip

2
(CNOT12)(H1)

|�01i =
|01i + |10ip

2
(X1)(CNOT12)(H1)

|�10i =
|00i � |11ip

2
(Z1)(CNOT12)(H1)

|�11i =
|01i � |10ip

2
(Z1)(X1)(CNOT12)(H1)

H
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H Z

H X Z



Problem 5:
Formulate a circuit to generate the Greenberger-Horne-Zeilinger (GHZ) state | i =

1p
2
(|000i + |111i).

Solution:

| i = 1p
2

(|000i + |111i) (CNOT13)(CNOT12)(H1)

H



Problem 6:
Write down the circuit (S WAP)(H2)(CS 21)(H1) in the standard matrix representation.
Draw the circuit as a quantum circuit diagram.

Solution:
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0
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II. Quantum states

Problem 4:
Determine whether the state | i = 1

2 (|00i + |01i + |10i � |11i) is separable or entan-
gled using the Schmidt decomposition.

Solution:
a00 =

1
2, a01 =

1
2, a10 =

1
2, a11 = �1

2

aa† =
1
4
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1 �1

!  
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!
=

0
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1
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This matrix is already diagonal. There are two non-zero Schmidt coefficients and
thus the Schmidt number is 2, and the state is entangled.



Pauli matrices

�x =

 
0 1
1 0

!
�y =

 
0 �i
i 0

!
�z =

 
1 0
0 �1

!

Any 2⇥2 matrix can be written as a linear combination of the matrices {I,�x,�y,�z}.

Properties:

The Pauli matrices are both hermitian and unitary �2
x = �

2
y = �

2
z = 1̂, and their

products are

�x�y = i�z, �y�z = i�x, �z�x = i�y.

Notice that for ↵ , �, where ↵, � = x, y, z, they satisfy

�↵���↵ = ���.



Pauli matrices anti-commute

{�x,�y} = �x�y + �y�x = {�y,�z} = {�z,�x} = 0

and satisfy the commutation relations
h
�x,�y

i
= 2i�z,

h
�y,�z

i
= 2i�x,

⇥
�z,�x

⇤
= 2i�y.

They are traceless and their determinant is �1

tr�x = tr�y = tr�z = 0
det�x = det�y = det�x = �1

⇣
~� · ~A
⌘ ⇣
~� · ~B
⌘
= ~A · ~B + i~� ·

⇣
~A ⇥ ~B

⌘



Taylor expansion of single-qubit evolution operators

Assignment 3, Problem 3

R̂~n(✓) = e�i✓ ~n·~� /2

=
X

k

(�i✓ ~n · ~� /2)k

k!

=
X

k
(�i)k(✓/2)k

k!
(~k · ~�)k

To complete the solution will require:
• properties of Pauli matrices, and
• Taylor expansions of trigonometric functions.



Lie groups U(4) and S U(4)

U(4) is the group of unitary 4 ⇥ 4 matrices or operators, and S U(4) is the group of
unitary 4 ⇥ 4 matrices of the unit determinant. Elements u 2 U(4) can be expressed
in terms of elements g 2 S U(4):

u = ei↵g =
⇣
ei↵1̂
⌘

g

where 1̂ is a 4⇥4 unit matrix. Considering the determinant of the product of two n⇥n
matrices A and B, and using det(AB) = det A det B, we get

det u = det
⇣
ei↵g
⌘
= det

h⇣
ei↵1̂
⌘

g
i
= det

⇣
ei↵1̂
⌘

det g = ei4↵

from which we get in the two-qubit case

g =
u

4pdet u
.



Local invariants

1) Unitary transformation of any U 2 S U(4) into the Bell basis

UB = U†QUUQ = U†Qk1UQU†QAUQU†Qk2UQ = O1FO2,

where UQ =
1p
2

0
BBBBBBBBBBBBB@

1 0 0 i
0 i 1 0
0 i �1 0
1 0 0 �i

1
CCCCCCCCCCCCCA

2) Constructing the Makhlin matrix

m = UT
BUB = OT

2 FOT
1 O1FO2 = OT

2 F2O2

3) Computing the local invariants

g1 =
1
16

Re
h
tr 2(m)

i
, g2 =

1
16

Im
h
tr 2(m)

i
, g3 =

1
4

h
tr 2(m) � tr (m2)

i
.



For general two-qubit unitary matrices U 2 U(4) whose determinants are any com-
plex number of unit modulus, we define the local invariants as

g1 =
Re
h
tr 2(m)

i

16 det(U)
, g2 =

Im
h
tr 2(m)

i

16 det(U)
, g3 =

h
tr 2(m) � tr (m2)

i

4 det(U)
.

Examples:
1) Identity/unit matrix 1̂ 2 S U(4)

UB = U†Q1̂UQ = U†QUQ = 1̂

m = UT
BUB = 1̂

g1 =
1
16

Re
h
tr 2(m)

i
= 1, g2 =

1
16

Im
h
tr 2(m)

i
= 0, g3 =

1
4

h
tr 2(m) � tr (m2)

i
= 3.





3) Controlled phase-flip CPHASE

UB = U†Q(CPHAS E)UQ =
1
2

0
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1 0 0 1
0 �i �i 0
0 1 �1 0
�i 0 0 i

1
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0
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1 0 0 0
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0 0 1 0
0 0 0 �1
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0
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1 0 0 i
0 i 1 0
0 i �1 0
1 0 0 �i

1
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m = UT
BUB =

0
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0 0 0 �i
0 �1 0 0
0 0 1 0
i 0 0 0

1
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0
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0 0 0 i
0 �1 0 0
0 0 1 0
�i 0 0 0

1
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=

0
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�1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 �1

1
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Using the local invariants defined for U(4) and det(U) = �1, we get

g1 =
Re
h
tr 2(m)

i

16 det(U)
= 0, g2 =

Im
h
tr 2(m)

i

16 det(U)
= 0, g3 =

h
tr 2(m) � tr (m2)

i

4 det(U)
= 1.


