
Assignment 1: selected solutions

Problem 1: Show how the gates Y = −iZX, S =
√

Z and T =
√

S transform a general
state of one quantum bit.

Solution: The gates Z and X transform the standard basis vectors as follows:

Z|0〉 = |0〉, Z|1〉 = −|1〉,
X|0〉 = |1〉, X|1〉 = |0〉,

so the action of the gate Y = −iZX onto a general qubit state |ψ〉 = c0|0〉 + c1|1〉 as

Y |ψ〉 = −iZX(c0|0〉 + c1|1〉)
= −iZ(c0X|0〉 + c1X|1〉)
= −iZ(c1|0〉 + c0|1〉)
= −i(c1|0〉 − c0|1〉).



From the following Z|ψ〉 = Z(c0|0〉 + c1|1〉)
= c0Z|0〉 + c1Z|1〉
= c0|0〉 − c1|1〉
= c0S 2|0〉 + c1S 2|1〉.

we observe that S 2|0〉 = |0〉 = ei0|0〉 and S 2|1〉 = −|1〉 = eiπ|1〉. The action of the gate
S onto a general state of one quantum bit

S |ψ〉 = S (c0|0〉 + c1|1〉)
= c0S |0〉 + c1S |1〉
= c0|0〉 + eiπ/2c1|1〉
= c0|0〉 + ic1|1〉,

and similarly

T |ψ〉 = c0|0〉 + eiπ/4c1|1〉.



Single-qubit operations in the standard computational basis:

(i) Phase flip

Ẑ =

 ∑
k=0,1

|k〉〈k|

 Ẑ

 ∑
l=0,1

|l〉〈l|

 =∑
k,l
〈k|Ẑ|l〉 |k〉〈l|

= 〈0|Ẑ|0〉|0〉〈0| + 〈0|Ẑ|1〉|0〉〈1| + 〈1|Ẑ|0〉|1〉〈0| + 〈1|Ẑ|1〉|1〉〈1|

= 〈0|Ẑ|0〉
(

1
0

) (
1 0

)
+ 〈0|Ẑ|1〉

(
1
0

) (
0 1

)
+ 〈1|Ẑ|0〉

(
0
1

) (
1 0

)
+ 〈1|Ẑ|1〉

(
0
1

) (
0 1

)
=

(
〈0|Ẑ|0〉 〈0|Ẑ|1〉
〈1|Ẑ|0〉 〈1|Ẑ|1〉

)
=

(
1 0
0 −1

)



(ii) Bit flip

X̂ =

(
〈0|X̂|0〉 〈0|X̂|1〉
〈1|X̂|0〉 〈1|X̂|1〉

)
=

(
0 1
1 0

)



Problem 2: Write the gates Y = −iZX, S =
√

Z and T =
√

S in the Dirac notation
and in the matrix representation in the standard computational basis.

Solution: We can for example write the gate Z as Z = |0〉〈0| − |1〉〈1| which indeed
transforms the standard basis states correctly, e.g. Z|0〉 = |0〉〈0|0〉− |1〉〈1|0〉 = |0〉 and
similarly X = |0〉〈1| + |1〉〈0|.

Y = −iZX

= −i(|0〉〈0| − |1〉〈1|)(|0〉〈1| + |1〉〈0|)

= −i|0〉〈1| + i|1〉〈0|

= −i
(

1 0
0 −1

) (
0 1
1 0

)
= −i

(
0 1
−1 0

)
=

(
0 −i
i 0

)



For the rest of the problem 2 we use also functions of operators. After observing that
the gate Z is diagonal in the standard basis, we get

S =
√

Z =
( √

1 0
0
√
−1

)
=

 √ei0 0
0

√
eiπ

 = (
1 0
0 i

)



Problem 3: Show using the standard matrix representation that you can write the
controlled-NOT operations using the projection operators as follows:

CNOT12 = P̂0 ⊗ Î + P̂1 ⊗ X̂

where P̂0 = |0〉〈0| and P̂1 = |1〉〈1| are the single-qubit projectors, and Î is the single-
qubit identity, i.e. 2 × 2 unit matrix, and X̂ is the single-qubit bit-flip operator.

Solution: We first have to construct the matrix representation. The gate CNOT12
acts on the standard basis elements as CNOT12|00〉 = |00〉, CNOT12|01〉 = |01〉,
CNOT12|10〉 = |11〉 and CNOT12|11〉 = |10〉, which gives its matrix representation

CNOT12 =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0





We have to show that the r.h.s. gives the same matrix

P̂0 ⊗ Î + P̂1 ⊗ X̂ =

(
1
0

) (
1 0

)
⊗

(
1 0
0 1

)
+

(
0
1

) (
0 1

)
⊗

(
0 1
1 0

)

=

(
1 0
0 0

)
⊗

(
1 0
0 1

)
+

(
0 0
0 1

)
⊗

(
0 1
1 0

)

=


1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

 +


0 0 0 0
0 0 0 0
0 0 0 1
0 0 1 0

 =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0





Problem 4: Consider the controlled-PHAS E gate, that flips the phase of the target
qubit if the controlled qubit is in the state |1〉, and show in the standard matrix repre-
sentation that CPHAS E12 = CPHAS E21.

Solution:

CPHAS E12 = P̂0 ⊗ Î + P̂1 ⊗ Ẑ =
(

1 0
0 0

)
⊗

(
1 0
0 1

)
+

(
0 0
0 1

)
⊗

(
1 0
0 −1

)

=


1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

 +


0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 −1

 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1





and

CPHAS E21 = Î ⊗ P̂0 + Ẑ ⊗ P̂1 =

(
1 0
0 1

)
⊗

(
1 0
0 0

)
+

(
1 0
0 −1

)
⊗

(
0 0
0 1

)

=


1 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0

 +


0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 −1

 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1


which shows that

CPHAS E12 = CPHAS E21.



Problem 5: Consider the controlled-S gates, that applies the S gate to the target
qubit if the controlled qubit is in the state |1〉. Write down the controlled-S gates CS 12
and CS 21 (i) in the standard matrix representation and (ii) in compact form using
appropriate projectors.

Solution:

CS 12 = P̂0 ⊗ Î + P̂1 ⊗ Ŝ =
(

1 0
0 0

)
⊗

(
1 0
0 1

)
+

(
0 0
0 1

)
⊗

(
1 0
0 i

)

=


1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

 +


0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 i

 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 i





and similarly

CS 21 = Î ⊗ P̂0 + Ŝ ⊗ P̂1 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 i

 .



Assignment 2: supporting material

Types of operators

1. The hermitian conjugate or adjoint of a matrix is given as Â† = (ÂT )∗.

2. An operator Â is called hermitian if Â† = Â, or 〈Âφ|ψ〉 = 〈φ|Âψ〉.

3. An operator Û is called unitary if Û† = Û−1, that is ÛÛ† = Û†Û = 1̂.

4. An operator P̂ satisfying P̂ = P̂† and P̂ = P̂2 is a projection operator or projector.



Example:

1. CNOT†12 = (CNOT T
12)∗ =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


2. CNOT12 = CNOT†12 so the operator is hermitian. The matrix representation of
CNOT12 is real and symmetric. .

3. (CNOT12)(CNOT12)† = (CNOT12)†(CNOT12) = (CNOT12)(CNOT12) = Î, so the
operation is unitary.

4. CNOT12 is hermitian but it is not idempotent (CNOT12)(CNOT12) , (CNOT12),
so it is not a projector.



Density operator/matrix

We can represent a qubit state |φ〉, and any quantum state, by the projector onto
the one-dimensional subspace it spans:

ρ̂ = |φ〉〈φ| =
(
c0|0〉 + c1|1〉

) (
c∗0〈0| + c∗1〈1|

)
=

∣∣∣c0
∣∣∣2 |0〉〈0| + c0c∗1 |0〉〈1| + c∗0c1 |1〉〈0| + |c1|

2 |1〉〈1|

In matrix representation given by the standard computational basis, we have

ρ̂ =

(
ρ00 ρ01
ρ10 ρ11

)
=

(
c0
c1

) (
c∗0 c∗1

)
=


∣∣∣c0

∣∣∣2 c0c∗1

c∗0c1 |c1|
2


We observe that the norm of a state is Tr(ρ̂) = |c0|

2+ |c1|
2 = 1 and also that ρ10 = ρ

∗
01.



Bloch representation

The single-qubit density matrix can be decomposed as follows

ρ̂ =
1
2

(
Î + ~r . ~σ

)
=

1
2

(
Î + rx σx + ry σy + rz σz

)
=

1
2

[(
1 0
0 1

)
+ rx

(
0 1
1 0

)
+ ry

(
0 −i
i 0

)
+ rz

(
1 0
0 −1

)]

=
1
2

(
1 + rz rx − iry

rx + iry 1 − rz

)
where σx, σy, and σz are the Pauli matrices and the vector ~r =

(
rx, ry, rz

)
is called

the Bloch vector.



The Bloch vector components are real numbers between 0 between 1, are related to
the density matrix elements as shown (for a pure state)

rx = 2 Re
(
ρ10

)
= 2 Re

(
c∗0c1

)
ry = 2 Im

(
ρ10

)
= 2 Im

(
c∗0c1

)
rz = ρ00 − ρ11 =

∣∣∣c0
∣∣∣2 − |c1|

2

.



1. |φ〉 = |0〉

ρ̂ = |0〉〈0| =
(

1
0

) (
1∗ 0∗

)
=

(
1 0
0 0

)
⇒ ~r = (0, 0, 1)

2. |φ〉 = |1〉

ρ̂ = |1〉〈1| =
(

0
1

) (
0∗ 1∗

)
=

(
0 0
0 1

)
⇒ ~r = (0, 0,−1)

3. |φ〉 = 1√
2

(|0〉 + |1〉)

ρ̂ = |φ〉〈φ| =


1√
2

1√
2


(

1√
2
∗ 1√

2
∗

)
=

1
2

 1 1

1 1

 ⇒ ~r = (1, 0, 0)



4. |φ〉 = 1√
2

(|0〉 − |1〉)

ρ̂ = |φ〉〈φ| =


1√
2

− 1√
2


(

1√
2
∗ − 1√

2
∗

)
=

1
2

 1 −1

−1 1

 ⇒ ~r = (−1, 0, 0)

5. |φ〉 = 1√
2

(|0〉 + i|1〉)

ρ̂ = |φ〉〈φ| =


1√
2

i 1√
2


(

1√
2
∗

(
i 1√

2

)∗ )
=

1
2

 1 −i

i 1

 ⇒ ~r = (0, 1, 0)


