Assignment 1: selected solutions

Problem 1: Show how the gates $Y=-i Z X, S=\sqrt{Z}$ and $T=\sqrt{S}$ transform a general state of one quantum bit.

Solution: The gates Z and X transform the standard basis vectors as follows:

$$
\begin{array}{rr}
Z|0\rangle=|0\rangle, & Z|1\rangle
\end{array}=-|1\rangle,
$$

so the action of the gate $Y=-i Z X$ onto a general qubit state $|\psi\rangle=c_{0}|0\rangle+c_{1}|1\rangle$ as

$$
\begin{aligned}
Y|\psi\rangle & =-i Z X\left(c_{0}|0\rangle+c_{1}|1\rangle\right) \\
& =-i Z\left(c_{0} X|0\rangle+c_{1} X|1\rangle\right) \\
& =-i Z\left(c_{1}|0\rangle+c_{0}|1\rangle\right) \\
& =-i\left(c_{1}|0\rangle-c_{0}|1\rangle\right) .
\end{aligned}
$$

From the following

$$
\begin{aligned}
Z|\psi\rangle & =Z\left(c_{0}|0\rangle+c_{1}|1\rangle\right) \\
& =c_{0} Z|0\rangle+c_{1} Z|1\rangle \\
& =c_{0}|0\rangle-c_{1}|1\rangle \\
& =c_{0} S^{2}|0\rangle+c_{1} S^{2}|1\rangle .
\end{aligned}
$$

we observe that $S^{2}|0\rangle=|0\rangle=e^{i 0}|0\rangle$ and $S^{2}|1\rangle=-|1\rangle=e^{i \pi}|1\rangle$. The action of the gate S onto a general state of one quantum bit

$$
\begin{aligned}
S|\psi\rangle & =S\left(c_{0}|0\rangle+c_{1}|1\rangle\right) \\
& =c_{0} S|0\rangle+c_{1} S|1\rangle \\
& =c_{0}|0\rangle+e^{i \pi / 2} c_{1}|1\rangle \\
& =c_{0}|0\rangle+i c_{1}|1\rangle,
\end{aligned}
$$

and similarly

$$
T|\psi\rangle=c_{0}|0\rangle+e^{i \pi / 4} c_{1}|1\rangle
$$

Single-qubit operations in the standard computational basis:
(i) Phase flip

$$
\begin{aligned}
\hat{Z} & =\left(\sum_{k=0,1}|k\rangle\langle k|\right) \hat{Z}\left(\sum_{l=0,1}|l\rangle\langle l|\right)=\sum_{k, l}\langle k| \hat{Z}|l\rangle|k\rangle\langle l| \\
& =\langle 0| \hat{Z}|0\rangle|0\rangle\langle 0|+\langle 0| \hat{Z}|1\rangle|0\rangle\langle 1|+\langle 1| \hat{Z}|0\rangle|1\rangle\langle 0|+\langle 1| \hat{Z}|1\rangle|1\rangle\langle 1| \\
& =\langle 0| \hat{Z}|0\rangle\binom{ 1}{0}\left(\begin{array}{ll}
1 & 0
\end{array}\right)+\langle 0| \hat{Z}|1\rangle\binom{ 1}{0}\left(\begin{array}{ll}
0 & 1
\end{array}\right) \\
& +\langle 1| \hat{Z}|0\rangle\binom{ 0}{1}\left(\begin{array}{ll}
1 & 0
\end{array}\right)+\langle 1| \hat{Z}|1\rangle\binom{ 0}{1}\left(\begin{array}{ll}
0 & 1
\end{array}\right) \\
& =\left(\begin{array}{cc}
\langle 0| \hat{Z}|0\rangle & \langle 0| \hat{Z}|1\rangle \\
\langle 1| \hat{Z}|0\rangle & \langle 1| \hat{Z}|1\rangle
\end{array}\right)=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
\end{aligned}
$$

(ii) Bit flip

$$
\hat{X}=\left(\begin{array}{cc}
\langle 0| \hat{X}|0\rangle & \langle 0| \hat{X}|1\rangle \\
\langle 1| \hat{X}|0\rangle & \langle 1| \hat{X}|1\rangle
\end{array}\right)=\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right)
$$

Problem 2: Write the gates $Y=-i Z X, S=\sqrt{Z}$ and $T=\sqrt{S}$ in the Dirac notation and in the matrix representation in the standard computational basis.

Solution: We can for example write the gate Z as $Z=|0\rangle\langle 0|-|1\rangle\langle 1|$ which indeed transforms the standard basis states correctly, e.g. $Z|0\rangle=|0\rangle\langle 0 \mid 0\rangle-|1\rangle\langle 1 \mid 0\rangle=|0\rangle$ and similarly $X=|0\rangle\langle 1|+|1\rangle\langle 0|$.

$$
\begin{aligned}
Y & =-i Z X \\
& =-i(|0\rangle\langle 0|-|1\rangle\langle 1|)(|0\rangle\langle 1|+|1\rangle\langle 0|) \\
& =-i|0\rangle\langle 1|+i|1\rangle\langle 0| \\
& =-i\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right)=-i\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right)
\end{aligned}
$$

For the rest of the problem 2 we use also functions of operators. After observing that the gate Z is diagonal in the standard basis, we get

$$
S=\sqrt{Z}=\left(\begin{array}{cc}
\sqrt{1} & 0 \\
0 & \sqrt{-1}
\end{array}\right)=\left(\begin{array}{cc}
\sqrt{e^{i 0}} & 0 \\
0 & \sqrt{e^{i \pi}}
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & i
\end{array}\right)
$$

Problem 3: Show using the standard matrix representation that you can write the controlled-NOT operations using the projection operators as follows:

$$
C N O T_{12}=\hat{P}_{0} \otimes \hat{I}+\hat{P}_{1} \otimes \hat{X}
$$

where $\hat{P}_{0}=|0\rangle\langle 0|$ and $\hat{P}_{1}=|1\rangle\langle 1|$ are the single-qubit projectors, and \hat{I} is the singlequbit identity, i.e. 2×2 unit matrix, and \hat{X} is the single-qubit bit-flip operator.

Solution: We first have to construct the matrix representation. The gate CNOT_{12} acts on the standard basis elements as $C N O T_{12}|00\rangle=|00\rangle, C N O T_{12}|01\rangle=|01\rangle$, $C N O T_{12}|10\rangle=|11\rangle$ and $C N O T_{12}|11\rangle=|10\rangle$, which gives its matrix representation

$$
\text { CNOT }_{12}=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right)
$$

We have to show that the r.h.s. gives the same matrix

$$
\begin{aligned}
\hat{P}_{0} \otimes \hat{I}+\hat{P}_{1} \otimes \hat{X} & =\binom{1}{0}\left(\begin{array}{ll}
1 & 0
\end{array}\right) \otimes\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)+\binom{0}{1}\left(\begin{array}{ll}
0 & 1
\end{array}\right) \otimes\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \\
& =\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right) \otimes\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)+\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right) \otimes\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \\
& =\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)+\left(\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right)=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right)
\end{aligned}
$$

Problem 4: Consider the controlled-PHASE gate, that flips the phase of the target qubit if the controlled qubit is in the state |1 \rangle, and show in the standard matrix representation that CPHAS E $12=$ CPHAS $_{21}$.

Solution:

$$
\begin{aligned}
\text { CPHAS E }_{12} & =\hat{P}_{0} \otimes \hat{I}+\hat{P}_{1} \otimes \hat{\mathrm{Z}}=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right) \otimes\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)+\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right) \otimes\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \\
& =\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)+\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right)=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
\text { CPHAS E }_{21} & =\hat{I} \otimes \hat{P}_{0}+\hat{Z} \otimes \hat{P}_{1}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \otimes\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)+\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \otimes\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right) \\
& =\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)+\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & -1
\end{array}\right)=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right)
\end{aligned}
$$

which shows that
CPHAS $_{12}=$ CPHAS $_{21}$.

Problem 5: Consider the controlled-S gates, that applies the S gate to the target qubit if the controlled qubit is in the state $|1\rangle$. Write down the controlled-S gates $C S_{12}$ and $C S_{21}$ (i) in the standard matrix representation and (ii) in compact form using appropriate projectors.

Solution:

$$
\begin{aligned}
C S_{12} & =\hat{P}_{0} \otimes \hat{I}+\hat{P}_{1} \otimes \hat{S}=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right) \otimes\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)+\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right) \otimes\left(\begin{array}{ll}
1 & 0 \\
0 & i
\end{array}\right) \\
& =\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)+\left(\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & i
\end{array}\right)=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & i
\end{array}\right)
\end{aligned}
$$

and similarly

$$
C S_{21}=\hat{I} \otimes \hat{P}_{0}+\hat{S} \otimes \hat{P}_{1}=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & i
\end{array}\right)
$$

Assignment 2: supporting material

Types of operators

1. The hermitian conjugate or adjoint of a matrix is given as $\hat{A}^{\dagger}=\left(\hat{A}^{T}\right)^{*}$.
2. An operator \hat{A} is called hermitian if $\hat{A}^{\dagger}=\hat{A}$, or $\langle\hat{A} \phi \mid \psi\rangle=\langle\phi \mid \hat{A} \psi\rangle$.
3. An operator \hat{U} is called unitary if $\hat{U}^{\dagger}=\hat{U}^{-1}$, that is $\hat{U} \hat{U}^{\dagger}=\hat{U}^{\dagger} \hat{U}=\hat{1}$.
4. An operator \hat{P} satisfying $\hat{P}=\hat{P}^{\dagger}$ and $\hat{P}=\hat{P}^{2}$ is a projection operator or projector.

Example:

1. $C N O T_{12}^{\dagger}=\left(\text { CNOT }_{12}^{T}\right)^{*}=\left(\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0\end{array}\right)$
2. CNOT $_{12}=$ CNOT $_{12}^{\dagger}$ so the operator is hermitian. The matrix representation of $C N O T_{12}$ is real and symmetric. .
3. $\left(\right.$ CNOT $\left._{12}\right)\left(\text { CNOT }_{12}\right)^{\dagger}=\left(\text { CNOT }_{12}\right)^{\dagger}\left(\right.$ CNOT $\left._{12}\right)=\left(\right.$ CNOT $\left._{12}\right)\left(\right.$ CNOT $\left._{12}\right)=\hat{I}$, so the operation is unitary.
4. CNOT_{12} is hermitian but it is not idempotent $\left(\mathrm{CNOT}_{12}\right)\left(\mathrm{CNOT}_{12}\right) \neq\left(\mathrm{CNOT}_{12}\right)$, so it is not a projector.

Density operator/matrix

We can represent a qubit state $|\phi\rangle$, and any quantum state, by the projector onto the one-dimensional subspace it spans:

$$
\begin{aligned}
\hat{\rho} & =|\phi\rangle\langle\phi|=\left(c_{0}|0\rangle+c_{1}|1\rangle\right)\left(c_{0}^{*}\langle 0|+c_{1}^{*}\langle 1|\right) \\
& =\left|c_{0}\right|^{2}|0\rangle\langle 0|+c_{0} c_{1}^{*}|0\rangle\langle 1|+c_{0}^{*} c_{1}|1\rangle\langle 0|+\left|c_{1}\right|^{2}|1\rangle\langle 1|
\end{aligned}
$$

In matrix representation given by the standard computational basis, we have

$$
\hat{\rho}=\left(\begin{array}{ll}
\rho_{00} & \rho_{01} \\
\rho_{10} & \rho_{11}
\end{array}\right)=\binom{c_{0}}{c_{1}}\left(\begin{array}{cc}
c_{0}^{*} & c_{1}^{*}
\end{array}\right)=\left(\begin{array}{ll}
\left|c_{0}\right|^{2} & c_{0} c_{1}^{*} \\
c_{0}^{*} c_{1} & \left|c_{1}\right|^{2}
\end{array}\right)
$$

We observe that the norm of a state is $\operatorname{Tr}(\hat{\rho})=\left|c_{0}\right|^{2}+\left|c_{1}\right|^{2}=1$ and also that $\rho_{10}=\rho_{01}^{*}$.

Bloch representation

The single-qubit density matrix can be decomposed as follows

$$
\begin{aligned}
\hat{\rho} & =\frac{1}{2}(\hat{I}+\vec{r} \cdot \vec{\sigma})=\frac{1}{2}\left(\hat{I}+r_{x} \sigma_{x}+r_{y} \sigma_{y}+r_{z} \sigma_{z}\right) \\
& =\frac{1}{2}\left[\left(\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right)+r_{x}\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right)+r_{y}\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right)+r_{z}\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)\right] \\
& =\frac{1}{2}\left(\begin{array}{cc}
1+r_{z} & r_{x}-i r_{y} \\
r_{x}+i r_{y} & 1-r_{z}
\end{array}\right)
\end{aligned}
$$

where σ_{x}, σ_{y}, and σ_{z} are the Pauli matrices and the vector $\vec{r}=\left(r_{x}, r_{y}, r_{z}\right)$ is called the Bloch vector.

The Bloch vector components are real numbers between 0 between 1 , are related to the density matrix elements as shown (for a pure state)

$$
\begin{aligned}
& r_{x}=2 \operatorname{Re}\left(\rho_{10}\right)=2 \operatorname{Re}\left(c_{0}^{*} c_{1}\right) \\
& r_{y}=2 \operatorname{Im}\left(\rho_{10}\right)=2 \operatorname{Im}\left(c_{0}^{*} c_{1}\right) . \\
& r_{z}=\rho_{00}-\rho_{11}=\left|c_{0}\right|^{2}-\left|c_{1}\right|^{2}
\end{aligned}
$$

1. $|\phi\rangle=|0\rangle$

$$
\hat{\rho}=|0\rangle\langle 0|=\binom{1}{0}\left(\begin{array}{ll}
1^{*} & 0^{*}
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right) \quad \Rightarrow \quad \vec{r}=(0,0,1)
$$

2. $|\phi\rangle=|1\rangle$

$$
\hat{\rho}=|1\rangle\langle 1|=\binom{0}{1}\left(\begin{array}{ll}
0^{*} & 1^{*}
\end{array}\right)=\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right) \quad \Rightarrow \quad \vec{r}=(0,0,-1)
$$

3. $|\phi\rangle=\frac{1}{\sqrt{2}}(|0\rangle+|1\rangle)$

$$
\hat{\rho}=|\phi\rangle\langle\phi|=\binom{\frac{1}{\sqrt{2}}}{\frac{1}{\sqrt{2}}}\left(\frac{1}{\sqrt{2}}^{*} \frac{1}{\sqrt{2}}^{*}\right)=\frac{1}{2}\left(\begin{array}{cc}
1 & 1 \\
1 & 1
\end{array}\right) \quad \Rightarrow \quad \vec{r}=(1,0,0)
$$

4. $|\phi\rangle=\frac{1}{\sqrt{2}}(|0\rangle-|1\rangle)$

$$
\hat{\rho}=|\phi\rangle\langle\phi|=\binom{\frac{1}{\sqrt{2}}}{-\frac{1}{\sqrt{2}}}\left(\frac{1}{\sqrt{2}}^{*}--_{\frac{1}{\sqrt{2}}^{*}}^{*}\right)=\frac{1}{2}\left(\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right) \quad \Rightarrow \quad \vec{r}=(-1,0,0)
$$

5. $|\phi\rangle=\frac{1}{\sqrt{2}}(|0\rangle+i|1\rangle)$

$$
\hat{\rho}=|\phi\rangle\langle\phi|=\binom{\frac{1}{\sqrt{2}}}{i \frac{1}{\sqrt{2}}}\left(\frac{1}{\sqrt{2}} *\left(i \frac{1}{\sqrt{2}}\right)^{*}\right)=\frac{1}{2}\left(\begin{array}{cc}
1 & -i \\
i & 1
\end{array}\right) \quad \Rightarrow \quad \vec{r}=(0,1,0)
$$

