
Standard computational basis

1 qubit: the dimension of the Hilbert space: d = 21

The standard computational basis

B = {|0〉, |1〉}

- orthogonality:

〈0|1〉 = 〈1|0〉 = 0

- normalization:

〈0|0〉 = 〈1|1〉 = 1

- or both using the Kronecker delta:

〈i| j〉 = δi j



2 qubits: the dimension of the Hilbert space: d = 22

The standard computational basis

B = {|00〉, |01〉, |10〉, |11〉}

- orthogonality:

〈00|01〉 = 〈01|00〉 = 0 〈00|10〉 = 〈10|00〉 = 0 〈00|11〉 = 〈11|00〉 = 0

〈01|10〉 = 〈10|01〉 = 0 〈01|11〉 = 〈11|01〉 = 0 〈10|11〉 = 〈11|10〉 = 0

-normalization:

〈00|00〉 = 〈01|01〉 = 〈10|10〉 = 〈11|11〉 = 1

or using the Kronecker delta

〈i1i2| j1 j2〉 = δi1 j1δi2 j2



n qubits: the dimension of the Hilbert space: d = 2n

The standard computational basis

B = {|0 . . . 00〉, |0 . . . 01〉, . . . , |1 . . . 10〉, |1 . . . 11〉}

- orthonormality

〈i1i2 . . . in| j1 j2 . . . in〉 = δi1 j1δi2 j2 . . . δin jn

Example: the standard basis of a three-qubit Hilbert space

B = {|000〉, |001〉, |010〉, |011〉, |100〉, |101〉, |110〉, |111〉}



Standard basis in matrix representation

Example: 1 qubit

B = {|0〉, |1〉}

B =

{(
1
0

) (
0
1

)}
Example: 2 qubits

B = {|00〉, |01〉, |10〉, |11〉}

B =
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Example: 3 qubits

B = {|000〉, |001〉, |010〉, |011〉, |100〉, |101〉, |110〉, |111〉}

B =
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Representation of a quantum mechanical state

We will first introduce the completeness relation which is a useful way of expressing
an identity operator on the Hilbert space.

Consider the standard computational basis as an example, the completeness relation
has the form

|0〉 〈0| + |1〉 〈1| = 1̂

We use it to define the representations of |ψ〉

|ψ〉 = 1̂ |ψ〉 = (|0〉 〈0| + |1〉 〈1|) |ψ〉
= |0〉 〈0|ψ〉 + |1〉 〈1|ψ〉
= 〈0|ψ〉 |0〉 + 〈1|ψ〉 |1〉
= c0|0〉 + c1|1〉

where the probability amplitudes are explicitly c0 = 〈0|ψ〉 and c1 = 〈1|ψ〉.



It is easy to verify in our case that the completeness relation is an identity operator
using the matrix representation

|0〉 〈0| + |1〉 〈1| =
(

1
0

) (
1 0

)
+

(
0
1

) (
0 1

)
=

(
1 0
0 0

)
+

(
0 0
0 1

)
=

(
1 0
0 1

)
= 1̂

More generally, the completeness relation is given as∑
i
|φi〉〈φi| = 1̂

where the sum goes over all basis vectors B = {|φ1〉, |φ2〉 . . .}.

Our state can now be expanded into a a specific superposition of the basis vectors
{|φi〉}

|ψ〉 =
∑

i
|φi〉 〈φi|ψ〉︸︷︷︸

a number ci ∈ C

=
∑

i
ci |φi〉



Operators

An adjoint operator Â† of a bounded operator Â is such that 〈ψ1|Âψ2〉 = 〈Â†ψ1|ψ2〉
for all |ψ1〉, |ψ2〉 ∈ H . Properties:∥∥∥∥Â†

∥∥∥∥ = ∥∥∥Â
∥∥∥(

Â†
)†
= Â(

Â + B̂
)†
= Â† + B̂†(

ÂB̂
)†
= B̂†Â†(the order changes)(

λÂ
)†
= λ∗Â†

In finite dimensions, an operator can be represented as a matrix and its adjoint is
then obtained by

Â† =
(
AT

)∗
transpose and complex conjugation



Examples of types of operators

1. An operator Â is called hermitian or selfadjoint if Â† = Â, or 〈Âφ|ψ〉 = 〈φ|Âψ〉.

This is the property of quantum observables which can represent physical quantities.
Their eigenvalues are real numbers, for example the Hamiltonian representing total
energy of a quantum mechanical system and has the following eigenvalue equation

Ĥ|E〉 = E|E〉

where E are the eigenvalues and |E〉 are the corresponding eigenvectors.



2. Let Â be an operator. If there exists an operator Â−1 such that ÂÂ−1 = Â−1Â = 1̂
(identity operator) then Â−1 is called an inverse operator to Â

Properties: (
ÂB̂

)−1
= B̂−1Â−1(

Â†
)−1

=
(
Â−1

)†
3. An operator Û is called unitary if Û† = Û−1, that is ÛÛ† = Û†Û = 1̂.

Example: Quantum evolution operator

|ψ(t)〉 = e−
i
~Ĥt
|ψ(0)〉 = Û |ψ(0)〉



4. An operator P̂ satisfying P̂ = P̂† = P̂2 is a projection operator or projector
e.g. if |ψk〉 is a normalized vector then

P̂k = |ψk〉〈ψk|

is the projector onto one-dimensional space spanned by all vectors linearly depen-
dent on |ψk〉.

Example:

P̂0 = |0〉〈0| =
(

1 0
0 0

)
P̂1 = |1〉〈1| =

(
0 0
0 1

)



Matrix representation

Operator is uniquely defined by its action on the basis vectors of the Hilbert space.

Let B =
{
|φ j〉

}
be a basis of a finite-dimensional H . Consider the completeness

relation ∑
i
|φi〉〈φi| = 1̂

and apply it as an identity onto an operator Â from both sides

Â =
∑
k j
|φk〉〈φk|Â|φ j〉〈φ j| =

∑
k j

Ak j|φk〉〈φ j|

where Ak j = 〈φk|Â|φ j〉 are the matrix elements of the operator Â in the matrix repre-
sentation given by the basis B, and the operators |φk〉〈φ j| correspond to the position
of the corresponding matrix element in the matrix in this representation.



Example: the bit flip gate

X|0〉 = |1〉 X|1〉 = |0〉.

The matrix representation

X = (|0〉〈0| + |1〉〈1|)X(|0〉〈0| + |1〉〈1|)

= |0〉〈0|X|0〉〈0| + |0〉〈0|X|1〉〈1| + |1〉〈1|X|0〉〈0| + |1〉〈1|X|1〉〈1|

= 〈0|X|0〉|0〉〈0| + 〈0|X|1〉|0〉〈1| + 〈1|X|0〉|1〉〈0| + 〈1|X|1〉|1〉〈1|

= 〈0|1〉|0〉〈0| + 〈0|0〉|0〉〈1| + 〈1|1〉|1〉〈0| + 〈1|0〉|1〉〈1|

= 0 · |0〉〈0| + 1 · |0〉〈1| + 1 · |1〉〈0| + 0 · |1〉〈1|

=

(
0 1
0 0

)
+

(
0 0
1 0

)



Eigenvalues and eigenvectors

Finding the eigenvalues and eigenvectors of operators is essential in quantum me-
chanics.

We say that an operator Â satisfies the eigenvalue equation if the following holds

Â|ψ j〉 = α j︸︷︷︸
eigenvalue

|ψ j〉︸︷︷︸
eigenvector

where |ψ j〉 is the eigenvector that corresponds to the eigenvalue α j. Since the eigen-
values are numbers, the eigenvalue equation means that a result of the action of an
operator onto its eigenvector is proportional to the eigenvector.



Spectral decomposition of an operator

Every operator can be diagonalised, that is expressed in terms of the eigenvalues
and eigenvectors in the following form: assume that the basis in the Hilbert space is
chosen to be defined in terms of the eigenvectors of Â , that is in terms of the basis
satisfying Â|ψ j〉 = α j|ψ j〉, then the operator can be written as

Â =
∑

k

∑
j
|ψk〉〈ψk|Â|ψ j〉〈ψ j| =

∑
k

∑
j
〈ψk|Â|ψ j〉|ψk〉〈ψ j|

=
∑

k

∑
j
α j〈ψk|ψ j〉|ψk〉〈ψ j| =

∑
k

∑
j
α jδk j|ψk〉〈ψ j|

=
∑

j
α j|ψ j〉〈ψ j|

This is the spectral decomposition.



Spectral decomposition of an operator Â

Â =
∑

j
α j|ψ j〉〈ψ j|

corresponds to a diagonal matrix because the operators |ψ j〉〈ψ j| correspond to diag-
onal elements in the matrix

Â =
∑

j
α j|ψ j〉〈ψ j| =


α1 0 0 . . .
0 α2 0 . . .
0 0 α3 . . .
... ... ... . . .


Example: Phase-flip gate Z in the standard computational basis B = {|0〉, |1〉}:

Z = (+1)|0〉〈0| + (−1)|1〉〈1| =
(
+1 0
0 −1

)



Functions of operators

It is particularly easy to calculate functions of operators if they are given by their
spectral decomposition:

f
(
Â
)
=

∑
j

f (α j)|ψ j〉〈ψ j| =


f (α1) 0 0 . . .

0 f (α2) 0 . . .
0 0 f (α3) . . .
... ... ... . . .


To calculate a function of an operator if it is not given in a diagonal form requires first
to diagonalise the operator, then calculate the function and at the end transform it
back to the original representation.


