QUANTUM MECHANICS FOUNDATIONS OF QUANTUM INFORMATION
PROCESSING

MEASUREMENT



FOURTH POSTULATE
(Measurement |)

The only possible result of the measurement of a physical quantity ‘A is one of the
eigenvalues of the corresponding observable A.



FIFTH POSTULATE
(Measurement |l)

1. a discrete non-degenerate spectrum:
When the physical quantity A is measured on a system in the normalized state
Iy, the probability P(a;,) of obtaining the non-degenerate eigenvalue a, of the
corresponding physical observable A is

Play) = |(“n|‘.»0>|2
where |u,) is the normalised eigenvector of A associated with the eigenvalue a,,.

2. adiscrete spectrum:

En b

Plap) = Zl(“:;w/)
i=1

John von Neumann, Mathematical Foundations of Quantum Mechanics



where g, is the degree of degeneracy of a, and {jul)} (i = 1,...,gy) is an or-
thonormal set of vectors which forms a basis in the eigenspace ‘H,, associated
with the eigenvalue a,, of the observable A.

. a continuous spectrum:
the probability dP(a) of obtaining result included between o and a + da is

dP(a) = |(velw)* da

where |v,) is the eigenvector corresponding to the eigenvalue «a of the observ-
able A.



SIXTH POSTULATE
(Measurement Ill)

If the measurement of the physical quantity ‘A on the system in the state |) gives
the result a,, the state of the system immediately after the measurement is the mor-

malized projection

Paly) Pyly)

Jwipawy P

of |) onto the eigensubspace associated with a,,.

John von Neumann, Mathematical Foundations of Quantum Mechanics



General measurement

Measurement is defined by the set of measurement operators {M,,} where m refers
to the measurement outcomes.

If the state of the system before the measurement is |¢), then the probability that
result m occurs is

TN
Pm = (¢|M,,1M,,,|¢)

and the state after the measurement is
Mml(b) _ MI?I|¢>

- ”Min|¢>” ) \/(¢|MT Mm|¢>




The measurement operators satisfy the completeness relation

Z mM" =

which expresses the fact that the probabilities of of measurement results sum to unity

Z(¢|M21Mm|¢> = Z Pm =1

m m



Distinguishing quantum states
Two-parties game: Alice chooses a state |;), where 1 < i < n, from some fixed set
of states known to both parties, and sends it to Bob whose task is to identify it.

If the states {|i/;)} are orthogonal than Bob can perform a quantum measurement to
distinguish the states: Bob has to define the measurement operators

o~

M; = | Xyl
My = \/f —Zl;ﬁ»(:,bd (positive square-root)

which satisfy the completeness relation and thus can be used to distinguish the state.

If the states {|;)} are non-orthogonal than there is no quantum measurement to
reliably distinguish the states.




Projective measurement

A projective measurement is described by an observable M, a self-adjoint operator
on a state space of the system which is being observed. The observable has the

spectral decomposition
M = Z ,-lmf’ m
m

where P, is the projector onto the eigenspace of M associated with the eigenvalue

/l”z -

The possible outcomes of the measurement correspond to the eigenvalues A4,, of the
observable M.



If the state of the system before the measurement is |¢), then the probability that the
result A, occurs is

P = (SP) Pld) = (G|P216) = (0| Pmlb)

and the state immediately after the measurement is

ﬁm Pm Pﬂl P"l
0 = 9 ¢ #)  _ Pmlé)

||Prﬂ|¢)|| J(ﬁblﬁ;lﬁrnlﬂb) ’((bli)nll(b) m

Projective measurement allows us to easily calculate the expectation value of an
observable M for the system in the state |¢)

< N >= (@IMI6) = (& [Z A,,,Pm] )= D Am(@\Puld) = ) Ampim

m m m



Heisenberg uncertainty relation

Let A and B be self-adjoint operators, and |¢) be a quantum state.
Suppose (¢|AB|¢) = x + iy, where x, y € R and note that

(@l|A.B|lg) = 2iy
(¢I{A,B}1g) = 2x

This implies

a1[A.B]10)| + |1 (4. B0 = 4|oidBio)f



By Cauchy-Schwarz inequality
A A 2 A A 2 ~ A A o
1A, Blig)| + (@l {A. B} 90| = [@IABIO) < @1A%IeXa1B21)

A a 2
and using the previous relation and dropping the term ‘(cpl {A, B} |¢>' we get

A A 2 " A
1[4, B]i0)| < 4p1A%1e)01B%9)
Suppose C and D are two observables. Substituting A = € - (C) and
B =D — (D), where (C) = (¢|C|¢) and (D) = (¢|D|¢), we get
(@A%1g) = (B](C* = 2C(C) +(C)?)1g) = (SIC7Ip) — (BICIg)* = (C*) = (C),
(@1B%g) = (#|(D* - 2D(D)y + (D)*)I¢) = ($|DIg) — ($IDIg)* = (D) — (D).



Inserting these into the equation

(1[4, B]16)|” < 40IA2i0x1B%0)

and taking the square root of both sides of the inequality, we obtain the Heisenberg
uncertainty relation

61[C. D] 1)

AC)AD) >

where AC) = V(CZ) — (€)= \[GIC2I8) - (@ICI)? and AD) = \[(@ID2g) - (@IDIg)?.



Example:

(i) Consider the observables X = o, and ¥ = oy when measured for the qubit state
10).

We know, or we can easily calculate, that [)’Z , f’] = 2iZ, where Z = o, so the uncer-
tainty relation is

01 [%,7]10)

AX)A(Y) > = (01Z10) = 1

(ii) Consider the observables & and pin a state )

ABAGP) > G [x’z"] D] _ g




Positive Operator-Valued Measure (POVM) measurements

Suppose a measurement described by the set of measurement operators {M,,} is
performed upon a quantum system in the state |¢).

Then the probability that result m occurs is pm = (GIM,, Myld).

Let us define
By = V1,
then E,, is a positive operator such that

D En=1 and py=(¢Enle)



The set {E,;} is known as a Positive Operator-Valued Measure or POVM.

The set of operators E,, which are known as POVM elements associated with the

measurement, are sufficient to determine the probabilities of different measurement
outcomes.

Example: Projective measurement

Em — Pm



POVM measurement: example

Alice sends one of the states below

W = 10)

1
W) = ——=(|0) +[1))
2

i V2

to Bob who however can not distinguish them reliably as they are not orthogonal.

However, he can perform a measurement that distinguishes the states some of the
time, and never makes an error of mis-identification.

> = [0>
> = 272(10>+{1>)




Consider the POVM

N 2
E V2 [1)(1]
1+ V2

V2

V2 10) - [1) (O] - (1]
(1+\/5) V2 V2

Ey = I-E|-E

f—

If the result of the measurement is E, then the state was |»), and if the result E,
occurs then the state was |;). Some of the time however, Bob will obtain the result
E5 from which he can infer nothing about the state.



Measurement and quantum circuit

Principle of deferred measurement

Measurement can always be moved from an intermediate stage of a quantum circuit
to the end of the circuit; if the measurement results are used at any stage of the circuit
then the classically controlled operations can be replaced by conditional quantum
operations.

Principle of implicit measurement

Without loss of generality, any unterminated quantum wires, that is, qubits that are
not measured, at the end of a quantum circuit may be assumed to be measured.



Example: Principle of deferred measurement in quantum teleportation circuit

Boo> =

[H

fd

1/




Measurement in other then computational basis

Recipe:
first unitarily transform from the basis you wish to perform a measurement in to

the computational basis, and then measure qubits in the computational basis.

Example: Measurement in the Bell basis in the superdense coding protocol
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