## QUANTUM MECHANICS FOUNDATIONS OF QUANTUM INFORMATION PROCESSING

MEASUREMENT

FOURTH POSTULATE (Measurement I)

The only possible result of the measurement of a physical quantity  $\mathcal{A}$  is one of the eigenvalues of the corresponding observable  $\hat{A}$ .

# FIFTH POSTULATE (Measurement II)

1. a discrete non-degenerate spectrum:

When the physical quantity  $\mathcal{A}$  is measured on a system in the normalized state  $|\psi\rangle$ , the probability  $\mathcal{P}(a_n)$  of obtaining the non-degenerate eigenvalue  $a_n$  of the corresponding physical observable  $\hat{A}$  is

$$\mathcal{P}(a_n) = |\langle u_n | \psi \rangle|^2$$

where  $|u_n\rangle$  is the normalised eigenvector of  $\hat{A}$  associated with the eigenvalue  $a_n$ .

2. a discrete spectrum:

$$\mathcal{P}(a_n) = \sum_{i=1}^{g_n} \left| \langle u_n^i | \psi \rangle \right|^2$$

John von Neumann, Mathematical Foundations of Quantum Mechanics

where  $g_n$  is the degree of degeneracy of  $a_n$  and  $\{|u_n^i\rangle\}$   $(i = 1, ..., g_n)$  is an orthonormal set of vectors which forms a basis in the eigenspace  $\mathcal{H}_n$  associated with the eigenvalue  $a_n$  of the observable  $\hat{A}$ .

3. a continuous spectrum:

the probability  $d\mathcal{P}(\alpha)$  of obtaining result included between  $\alpha$  and  $\alpha + d\alpha$  is

$$\mathrm{d}\mathcal{P}(\alpha) = |\langle v_{\alpha} | \psi \rangle|^2 \, \mathrm{d}\alpha$$

where  $|v_{\alpha}\rangle$  is the eigenvector corresponding to the eigenvalue  $\alpha$  of the observable  $\hat{A}$ .

SIXTH POSTULATE (Measurement III)

If the measurement of the physical quantity  $\mathcal{A}$  on the system in the state  $|\psi\rangle$  gives the result  $a_n$ , the state of the system immediately after the measurement is the mormalized projection

$$\frac{\hat{P}_n|\psi\rangle}{\sqrt{\langle\psi|\hat{P}_n|\psi\rangle}} = \frac{\hat{P}_n|\psi\rangle}{\left\|\hat{P}_n|\psi\rangle\right\|}$$

of  $|\psi\rangle$  onto the eigensubspace associated with  $a_n$ .

John von Neumann, Mathematical Foundations of Quantum Mechanics

### **General measurement**

Measurement is defined by the set of measurement operators  $\{\hat{M}_m\}$  where *m* refers to the measurement outcomes.

If the state of the system before the measurement is  $|\phi\rangle$ , then the probability that result *m* occurs is

$$p_m = \langle \phi | \hat{M}_m^{\dagger} \hat{M}_m | \phi \rangle$$

and the state after the measurement is

$$|\psi\rangle = \frac{\hat{M}_m |\phi\rangle}{||\hat{M}_m |\phi\rangle||} = \frac{\hat{M}_m |\phi\rangle}{\sqrt{\langle\phi|\hat{M}_m^{\dagger} \hat{M}_m |\phi\rangle}}$$

The measurement operators satisfy the completeness relation

$$\sum_{m} \hat{M}_{m}^{\dagger} \hat{M}_{m} = \hat{I}$$

which expresses the fact that the probabilities of of measurement results sum to unity

$$\sum_{m} \langle \phi | \hat{M}_{m}^{\dagger} \hat{M}_{m} | \phi \rangle = \sum_{m} p_{m} = 1$$

## Distinguishing quantum states

**Two-parties game:** Alice chooses a state  $|\psi_i\rangle$ , where  $1 \le i \le n$ , from some fixed set of states known to both parties, and sends it to Bob whose task is to identify it.

If the states  $\{|\psi_i\rangle\}$  are **orthogonal** than Bob can perform a quantum measurement to distinguish the states: Bob has to define the measurement operators

$$\hat{M}_{i} = |\psi_{i}\rangle\langle\psi_{i}|$$

$$\hat{M}_{0} = \sqrt{\hat{I} - \sum_{i \neq 0} |\psi_{i}\rangle\langle\psi_{i}|}$$
(positive square-root)

which satisfy the completeness relation and thus can be used to distinguish the state.

If the states  $\{|\psi_i\rangle\}$  are **non-orthogonal** than there is no quantum measurement to reliably distinguish the states.



#### Projective measurement

A projective measurement is described by an observable  $\hat{M}$ , a self-adjoint operator on a state space of the system which is being observed. The observable has the spectral decomposition

$$\hat{M} = \sum_{m} \lambda_m \hat{P}_m$$

where  $\hat{P}_m$  is the projector onto the eigenspace of  $\hat{M}$  associated with the eigenvalue  $\lambda_m$ .

The possible outcomes of the measurement correspond to the eigenvalues  $\lambda_m$  of the observable  $\hat{M}$ .

If the state of the system before the measurement is  $|\phi\rangle$ , then the probability that the result  $\lambda_m$  occurs is

$$p_m = \langle \phi | \hat{P}_m^{\dagger} \hat{P}_m | \phi \rangle = \langle \phi | \hat{P}_m^2 | \phi \rangle = \langle \phi | \hat{P}_m | \phi \rangle$$

and the state immediately after the measurement is

$$|\psi\rangle = \frac{\hat{P}_m|\phi\rangle}{||\hat{P}_m|\phi\rangle||} = \frac{\hat{P}_m|\phi\rangle}{\sqrt{\langle\phi|\hat{P}_m^{\dagger}\hat{P}_m|\phi\rangle}} = \frac{\hat{P}_m|\phi\rangle}{\sqrt{\langle\phi|\hat{P}_m|\phi\rangle}} = \frac{\hat{P}_m|\phi\rangle}{\sqrt{P_m}}$$

Projective measurement allows us to easily calculate the expectation value of an observable  $\hat{M}$  for the system in the state  $|\phi\rangle$ 

$$<\hat{M}>=\langle\phi|\hat{M}|\phi\rangle=\langle\phi|\left(\sum_{m}\lambda_{m}\hat{P}_{m}\right)|\phi\rangle=\sum_{m}\lambda_{m}\langle\phi|\hat{P}_{m}|\phi\rangle=\sum_{m}\lambda_{m}p_{m}$$

## Heisenberg uncertainty relation

Let  $\hat{A}$  and  $\hat{B}$  be self-adjoint operators, and  $|\phi\rangle$  be a quantum state. Suppose  $\langle \phi | \hat{A} \hat{B} | \phi \rangle = x + iy$ , where  $x, y \in \mathbb{R}$  and note that

$$\begin{array}{lll} \left\langle \phi \right| \left[ \hat{A}, \hat{B} \right] \left| \phi \right\rangle &=& 2iy \\ \left\langle \phi \right| \left\{ \hat{A}, \hat{B} \right\} \left| \phi \right\rangle &=& 2x \end{array}$$

This implies

$$\left| \left\langle \phi \right| \left[ \hat{A}, \hat{B} \right] \left| \phi \right\rangle \right|^2 + \left| \left\langle \phi \right| \left\{ \hat{A}, \hat{B} \right\} \left| \phi \right\rangle \right|^2 = 4 \left| \left\langle \phi \right| \hat{A} \hat{B} \left| \phi \right\rangle \right|^2$$

By Cauchy-Schwarz inequality

$$\left|\langle\phi|\left[\hat{A},\hat{B}\right]|\phi\rangle\right|^{2}+\left|\langle\phi|\left\{\hat{A},\hat{B}\right\}|\phi\rangle\right|^{2}=\left|\langle\phi|\hat{A}\hat{B}|\phi\rangle\right|^{2}\leq\langle\phi|\hat{A}^{2}|\phi\rangle\langle\phi|\hat{B}^{2}|\phi\rangle$$

and using the previous relation and dropping the term  $\left|\langle \phi | \{\hat{A}, \hat{B}\} | \phi \rangle\right|^2$  we get

$$\left|\langle \phi | \left[ \hat{A}, \hat{B} \right] | \phi \rangle \right|^2 \le 4 \langle \phi | \hat{A}^2 | \phi \rangle \langle \phi | \hat{B}^2 | \phi \rangle$$

Suppose  $\hat{C}$  and  $\hat{D}$  are two observables. Substituting  $\hat{A} = \hat{C} - \langle \hat{C} \rangle$  and  $\hat{B} = \hat{D} - \langle \hat{D} \rangle$ , where  $\langle \hat{C} \rangle = \langle \phi | \hat{C} | \phi \rangle$  and  $\langle \hat{D} \rangle = \langle \phi | \hat{D} | \phi \rangle$ , we get

$$\begin{aligned} \langle \phi | \hat{A}^2 | \phi \rangle &= \langle \phi | \left( \hat{C}^2 - 2\hat{C} \langle \hat{C} \rangle + \langle \hat{C} \rangle^2 \right) | \phi \rangle = \langle \phi | \hat{C}^2 | \phi \rangle - \langle \phi | \hat{C} | \phi \rangle^2 = \langle \hat{C}^2 \rangle - \langle \hat{C} \rangle^2, \\ \langle \phi | \hat{B}^2 | \phi \rangle &= \langle \phi | \left( \hat{D}^2 - 2\hat{D} \langle \hat{D} \rangle + \langle \hat{D} \rangle^2 \right) | \phi \rangle = \langle \phi | \hat{D}^2 | \phi \rangle - \langle \phi | \hat{D} | \phi \rangle^2 = \langle \hat{D}^2 \rangle - \langle \hat{D} \rangle^2. \end{aligned}$$

Inserting these into the equation

$$\left|\langle \phi | \left[ \hat{A}, \hat{B} \right] | \phi \rangle \right|^2 \le 4 \langle \phi | \hat{A}^2 | \phi \rangle \langle \phi | \hat{B}^2 | \phi \rangle$$

and taking the square root of both sides of the inequality, we obtain the **Heisenberg uncertainty relation** 

$$\Delta(\hat{C})\Delta(\hat{D}) \geq \frac{\left|\langle \phi | \left[\hat{C}, \hat{D}\right] | \phi \rangle\right|}{2}$$
  
where  $\Delta(\hat{C}) = \sqrt{\langle \hat{C}^2 \rangle - \langle \hat{C} \rangle^2} = \sqrt{\langle \phi | \hat{C}^2 | \phi \rangle - \langle \phi | \hat{C} | \phi \rangle^2}$  and  $\Delta(\hat{D}) = \sqrt{\langle \phi | \hat{D}^2 | \phi \rangle - \langle \phi | \hat{D} | \phi \rangle^2}.$ 

### Example:

(i) Consider the observables  $\hat{X} = \sigma_x$  and  $\hat{Y} = \sigma_y$  when measured for the qubit state  $|0\rangle$ .

We know, or we can easily calculate, that  $[\hat{X}, \hat{Y}] = 2i\hat{Z}$ , where  $\hat{Z} = \sigma_z$ , so the uncertainty relation is

$$\Delta(\hat{X})\Delta(\hat{Y}) \geq \frac{\left|\langle 0|\left[\hat{X},\hat{Y}\right]|0\rangle\right|}{2} = \langle 0|\hat{Z}|0\rangle = 1$$

(ii) Consider the observables  $\hat{x}$  and  $\hat{p}$  in a state  $|\psi\rangle$ 

$$\Delta(\hat{x})\Delta(\hat{p}) \geq \frac{\left|\langle \psi | \left[\hat{x}, \hat{p}\right] | \psi \rangle\right|}{2} = \frac{\hbar}{2}$$

## **Positive Operator-Valued Measure (POVM) measurements**

Suppose a measurement described by the set of measurement operators  $\{\hat{M}_m\}$  is performed upon a quantum system in the state  $|\phi\rangle$ .

Then the probability that result *m* occurs is  $p_m = \langle \phi | \hat{M}_m^{\dagger} \hat{M}_m | \phi \rangle$ .

Let us define

$$\hat{E}_m = \hat{M}_m^{\dagger} \hat{M}_m$$

then  $E_m$  is a positive operator such that

$$\sum_{m} \hat{E}_{m} = 1 \quad \text{and} \quad p_{m} = \langle \phi | \hat{E}_{m} | \phi \rangle$$

The set  $\{E_m\}$  is known as a Positive Operator-Valued Measure or POVM.

The set of operators  $\hat{E}_m$  which are known as POVM elements associated with the measurement, are sufficient to determine the probabilities of different measurement outcomes.

Example: Projective measurement

$$\hat{E}_m = \hat{P}_m$$

### POVM measurement: example

Alice sends one of the states below

$$\begin{array}{lll} |\psi_1\rangle &=& |0\rangle \\ |\psi_2\rangle &=& \displaystyle \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle) \end{array}$$

to Bob who however can not distinguish them reliably as they are not orthogonal.

However, he can perform a measurement that distinguishes the states some of the time, and never makes an error of mis-identification.



 $|\psi_1 > = |0>$  $|\psi_2 > = 2^{-1/2}(|0>+|1>)$ 





Consider the POVM

$$\hat{E}_{1} = \frac{\sqrt{2}}{1 + \sqrt{2}} |1\rangle \langle 1|$$

$$\hat{E}_{2} = \frac{\sqrt{2}}{(1 + \sqrt{2})} \frac{|0\rangle - |1\rangle}{\sqrt{2}} \frac{\langle 0| - \langle 1|}{\sqrt{2}}$$

$$\hat{E}_{3} = \hat{I} - \hat{E}_{1} - \hat{E}_{2}$$

If the result of the measurement is  $E_1$ , then the state was  $|\psi_2\rangle$ , and if the result  $E_2$  occurs then the state was  $|\psi_1\rangle$ . Some of the time however, Bob will obtain the result  $E_3$  from which he can infer nothing about the state.

## Measurement and quantum circuit

### Principle of deferred measurement

Measurement can always be moved from an intermediate stage of a quantum circuit to the end of the circuit; if the measurement results are used at any stage of the circuit then the classically controlled operations can be replaced by conditional quantum operations.

## Principle of implicit measurement

Without loss of generality, any unterminated quantum wires, that is, qubits that are not measured, at the end of a quantum circuit may be assumed to be measured.

Example: Principle of deferred measurement in quantum teleportation circuit



## Measurement in other then computational basis

## Recipe:

first unitarily transform from the basis you wish to perform a measurement in to the computational basis, and then measure qubits in the computational basis.

Example: Measurement in the Bell basis in the superdense coding protocol

