




John von Neumann, Mathematical Foundations of Quantum Mechanics





John von Neumann, Mathematical Foundations of Quantum Mechanics















By Cauchy-Schwarz inequality
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and using the previous relation and dropping the term
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Suppose Ĉ and D̂ are two observables. Substituting Â = Ĉ � hĈi and
B̂ = D̂ � hD̂i, where hĈi = h�|Ĉ|�i and hD̂i = h�|D̂|�i, we get

h�|Â2|�i = h�|
⇣

Ĉ

2 � 2ĈhĈi + hĈi2
⌘

|�i = h�|Ĉ2|�i � h�|Ĉ|�i2 = hĈ2i � hĈi2,
h�|B̂2|�i = h�|

⇣

D̂

2 � 2D̂hD̂i + hD̂i2
⌘

|�i = h�|D̂2|�i � h�|D̂|�i2 = hD̂2i � hD̂i2.



Inserting these into the equation
�

�

�

�

h�|
h
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and taking the square root of both sides of the inequality, we obtain the Heisenberg
uncertainty relation
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where �(Ĉ) =
p

hĈ2i � hĈi2 =
q

h�|Ĉ2|�i � h�|Ĉ|�i2 and �(D̂) =
q

h�|D̂2|�i � h�|D̂|�i2.





Positive Operator-Valued Measure (POVM) measurements

Suppose a measurement described by the set of measurement operators {M̂
m

} is
performed upon a quantum system in the state |�i.

Then the probability that result m occurs is p

m
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is a positive operator such that
X

m

Ê
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