




Formal solution of the Schrödinger equation:

(i) Time-dependent Hamiltonian

| (t)i = T e�
i
~

R t
0

ˆH(t0) dt0 | (0)i = ˆUt | (0)i
where T is a time ordering operator.

(ii) Time-independent Hamiltonian

| (t)i = e�
i
~

ˆHt | (0)i = ˆUt | (0)i

The operator ˆUt is called evolution operator or propagator. It evolves or propa-
gates state of a quantum mechanical system from the initial time t0 = 0 to a final time
t0 = t.
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Parameter counting:
6 +        3 +       6 =    15   =    42 - 1

If two gates have the same A in the Cartan decomposition, they are 
locally equivalent:





Local invariants (Makhlin 2002, Zhang et al. 2003)
The local equivalence classes of two-qubit operations are most conveniently defined
using local invariants which uniquely characterize two-qubit operations up to an
arbitrary single qubit transformations k

1

, k
2

2 S U(2) ⌦ S U(2).

Unitary transformation of any U 2 S U(4) into the Bell basis

UB = U†QUUQ = U†Qk
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changes k
1

and k
2

into orthogonal matrices O
1

and O
2

respectively, with the property
OT O = ˆ

1, and transforms the non-local factor of the Cartan decomposition A into a
diagonal matrix F.



Constructing the Makhlin matrix

m = UT
BUB = OT

2

FOT
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O
1

FO
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= OT
2

F2O
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eliminates one of the local factors in the Cartan decomposition of U and shows that
O

2

diagonalizes the Makhlin matrix, indeed F2 = O
2

mOT
2

.

From the corresponding characteristic equation, we could derive the local invariants
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Since the trace of a matrix is invariant w.r.t. a unitary transformation of the matrix,
the effect of the remaining local factor of the Cartan decomposition k

2

has been
eliminated, and the invariants indeed depend only on the matrix A.



For general two-qubit unitary matrices U 2 U(4) whose determinants are any com-
plex number of unit modulus, we can define the local invariants as
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where the division by det(U) eliminates the dependence on a global phase of U.



Example: Selected elements of the local equivalence class [CNOT ]
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The local invariants of all these matrices from the group U(4) are
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where det(U) = �1 for all the matrices in the example.



Weyl chamber
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