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THIRD POSTULATE
(Time Evolution)

The time evolution of the state vector |/(7)) is governed by the Schrédinger equation

d .
ihaldf(t)) = H(DW(1))

where (1) is the observable associated with the total energy of the system.



Formal solution of the Schrodinger equation:

(i) Time-dependent Hamiltonian
woy = T b AW o) = 0,0
where 7 is a time ordering operator.
(if) Time-independent Hamiltonian
W) = e ) = Oy o))
The operator U; is called evolution operator or propagator. It evolves or propa-

gates state of a quantum mechanical system from the initial time ¢ = 0 to a final time
t =t



Since the Hamiltonian is self-adjoined, the evolution operator is unitary:
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The evolution operator can also evolve the state given by a density operator. Since
(1)) = Uw(0)) and the adjoint is (¥(1)| = ((,b(U)IO'}L, the density matrix at time 1 is
given as

p() = W)W = U, [ wO) 07 = 0, po) 07



Example: A two-level atom

Let us have an atoms with two energy levels separated by the energy fiw:

E_ = —hw/2

E+ = + h(l)/z
In the representation given by the corresponding eigenvectors, |[E-) and |E+) respec-
tively, the Hamiltonian is

~  hw
=—(J':.

and the evolution operator then reads as

P . —iwt |2
U::c’_éH’:c’_'w“’E/Z:(e / 0 )

0 eiwt/Z



Connecting with Bloch representation

We can rewrite the evolution operator above as

. - e—iw!/Z 0 - (’_’8'{2 0
Ug = o o2 ]=l o i0/2

cos /2 0 i sinf/2 0
0 cosf/2 0 —sinf/2

6 ol .
cos— I —isin—o; = R-(0)
2 2

and examine its action on a qubit i) = ¢pl0) + ¢¢|1), where |0) = |[E_) and |1) = |E4),
whose initial state is given by the density matrix in the Bloch representation

p(0) = %(1 +H0) . &)



We evaluate the action of the evolution operator as follows
~ A ~ A A l ~ A-%'
p(t) = U;p(0) U = R(6) p(0) RL(6) = R(6) b (7+ #0) . &)‘ R!(0)
1, a N
= (I +R070). 3R.(0))

a 4. .. 0 4. .. 80
I+ (cos — I —isin— 0'5) (r_ﬁr_,‘- + ryoy + r:o':) (cos — I +isin— cr;)
2 2 T 2 2
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I+ (rycosf— rysin@) oy + (rysin@ + rycos#) oy + r; 0';_]

2| -

We observe that it causes the rotation of the Bloch vector around the axis z by
the angle 6:

A0) = (ry,ry.r;) = F(t) = (rycos @ — rysinf, rysinf + rycos 6, r;)



Similarly, we can define the rotation operators about any axis in the Bloch represen-
tation

N i . .. 0 cos@/2 —isinf/2
_ — oy /2 _ i — (T =
R (0) e cos 5 I —isin 5 Ty ( _ising/2 cos6/2 )
A _: 6. .. 0 cosf/2 —sinf/2
; = 190."/2 = -/ - — y =
Ry(8) e cos > I —isn 5 Ty ( sin@/2  cos6/2 )
. —iBo- . .. 0 012
R:(B) = ¢ B0 /2 = COS 5 I —isin 5 o- = ( 0 el'g/z )



Using the Taylor expansion of exponential function and properties of the Pauli oper-
ators, we can show that the operator for rotation by an angle ¢ about an axis defined
by a real unit vector i is

Rﬁ(g) — E_ig n.o ,/2

0 . 0
= cosz[—isinzi.
2 2
cos?—in.sin?  —incsin€ - Ny sin g
1 f i) t

—inysin3 +nysins  Cos3 + inzsinz



Properties of the set of all unitary operators R;(6):

1. product of two operators from this set is again a unitary operator

a A a a T a a A a A
Rﬁ(G)Rna,(B’)(R,?(B)R';,(B’)) = Rﬁ(a)R,;,(e’)R}(G')R“(e) =]

-p
n

R . T oa . R . A . .
(Ri(O)R () RyOR (') = RZ,’(H’)R;(B)RH(B)RH«;(B’) - I

ad since it is a product of two rotations in the Bloch representation we can trust
that the product itself also corresponds to a rotation and is therefore an element
of the same set.



Baker-Campbell-Hausdorff formula

It is to be said that we can not in general rewrite the product 1?,;(9)}'?"4,(9’) above
as a single exponential function. In the non-commutative world, the product
of two exponential functions of non-commuting operators is not an exponential
function of the sum of the two operators. Instead the product is given by the
Baker-Campbell-Hausdorff formula which for two non-commuting operators A
and B reads as

A oB — A+BHIABI+5(AIAB+(IA.B)B)+...



2. The set contains an identity operator R4(6 = 0) = 1.
3. every element of the set ﬁﬁ(G) has an inverse fe:;(e) = R;l(e);
4. every element of the set has the unit determinant: det R(6) = 1.

The properties above contain the group axioms. The set of unitary operators féﬁ(e)
hence forms a group, specifically, of 2-by-2 unitary matrices of unit determinant,
called

the special unitary group SU(2).



SU(2)is a Lie group

A Lie group is a group which is also a smooth manifold G. The neighborhood of any
point of a Lie group, considered as a manifold, looks exactly like that of any other.
Thus the group dimension and much of its structure can be understood by examining
the immediate vicinity of any chosen point, for instance, the identity element.

Example: a near identity element of the general linear group GL(n, R), which consists
of invertible n-by-n real matrices, can be written as g = I + €eA where A is an arbitrary
n-by-n matrix. This matrix consists of n* entries and therefore the group manifold
itself is n2 dimensional. GL(n, C) has 2n* real dimensions.

The special linear group S L(n, ) consists of elements of GL(n, k) characterized by
the unit determinant detg = 1. For the element near identity g = I + €A this implies



that trA = 0 as det(/ + €A) = 1 + € trA + O(€2). Consequently S L(n, ) is n® -1
dimensional. The dimension of S U(n) is also n — 1, so S U(2) is three dimensional
as a manifold.

The vectors lying in the tangent space at the identity element make up the Lie alge-
bra of the group. We say that the Lie group is generated by its Lie algebra.

Example: S U(2)
The Taylor expansion of fi’ﬁ(f?) € SU(2) to the first order in small # = € is

A —ie A, o Ty o-
Rie)=e €M-T /12 _ [ _ e Ny ==+ ny — + n- = + O(€?)
" 2 -2 2

where the expression in the bracket on r.h.s. is an element of the su(2) algebra and
T, = % where a = x,y, 7 are its generators.



More generally, the Lie algebra generators can be obtained from the group elements
g € G directly. In our case, we introduce 6 = 6 it = (6ny, 6ny, On;) = (6y,6y,6;) and
identify g(d) = R;6). The generators are then obtained by through the following
expression

og (9)

.
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The generators of su(2) algebra are indeed similar to the operators for components
of the spin angular momentum of a spin-1/2 particle, up to the scaling by #.
They also satisfy the same commutation, known as the Lie bracket,
[Ta. Tp] = i€ape Te
where €, is the Levi-Civita tensor.
The Lie bracket is antisymmetric, [X, Y] = —[Y, X], linear, [AX + uY.Z] = A[X,Z] +
ulY,Z], and obeys the Jacobi identity [[X, Y], Z] + [[Y.Z] ., X] + [[Z.X], Y] = 0.
The generators T, satisfy the following anticommutation relations:

{Tth Tb} = 6abi



Single-qubit operations are in U(2)

U(2) is the group of 2-by-2 unitary matrices or operators. In contrast to the elements
S U(2), the determinant of the elements of the group u € U(2) is not fixed to unity.
Each element u € U(2) can be expressed in terms of an element of S U(2) as

U= el(l‘g

where g € SU(2). The exponential function involving a € R will shift a global phase
of the qubit state. To see this we rewrite the exponential term as ¢ = (¢/®]). Con-
sidering the determinant of the product of two n-by-n matrices A and B, det(AB) =
det A det B, and the determinant det (e"“‘f) = ¢2% we obtain the map from the ele-
ments of U(2) and S U(2)

u

\/2 det u
In general, for u € U(n) we get g = u/ Vdetu with g € S U(n).

g:



Examples:

(i) Phase flip

5 1 0 . -1 0 _im/2 Y _ nf2 —imor-[2
£ = (0 -1)"( 0 i)“’ 0o i) ¢

The nontrivial term ¢~77z/2 on r.h.s. can be implemented via quantum evolution
under the Hamiltonian A = hwo /2 for time of the duration given by 1 = 7/w:

~L At _

3 -iwZ o2 —imorz[2
Utzn/w — ¢ h i w s ozf —e imo;/
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(ii) Bit flip
o _ [0 1Y a2 O =i\ _ inj2 —inoj2 _ inj2[ cosm/2  —isinm/2
X = (l 0)_8 (—i 0)_e ¢ - ¢ —isinm/2 cosm/2

(iii) Phase-bit fip ¥

V- ( 0 —i ) _ emjz( 0 -1 ) _ T2 iy /2 _ em/z( cosm/2 —sinm/2 )
. . ' o /2 =

i 0 sinm/2 cosm/2

The operations above can be implemented via evolution under the appropriate Hamil-
tonian operators for proper duration of time.



(iv)§ = VZ

R | . —in /4 : .

¢ - ( (l) (3 ) _ c’m/4( e . ei,fr)/«:l )= ot/ 4 p—imoz /4
where ¢™/* = Vdet§.

W) T =S

0 eizr/4 0 ein/S -

where /8 = \/det T

;o (1 0 )=ei”/8( e~mE )_eizr/8€—imr:/8



(vi) Hadamard gate
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Two-qubit gates are in U(4)

U(4) is the group of unitary 4-by-4 matrices or operators. Similarly to the single-qubit
gates, they can be expressed in terms of S U(4)

U4 =Ul)eSUM4)

where U(1) is the group of complex numbers of the unit modulus, ¢ and SU(4) is
the group of unitary 4-by-4 matrices of the unit determinant.



SU(4) Lie group and su(4) algebra
The SU(4) group is 15-dimensional: n% — 1 = 15.

Each element of S U(4) can be expressed as a complex exponential function of an
element of the su(4) algebra

B_i Zab Gab Tab

where T,;, are the generators of su(4) algebra. They naturally split into two sets.



(i) Generators of local, single-qubit, operations

Ty @ Ty = ‘2 , Typ=— 5 Tp= 5
@ I®oy I®o.
TO“ : TO\ = 2 r! TO\' = 2 =, TO: = 7

The generators from the first set commute with those of the second set. Each of
these sets, generates a subgroup S U(2), and thus together they generate the sub-
group of all single qubit operations, over the first and second qubit, in the SU(4)
group:

SU2)@SUR2)cSU4)



(i) Generators of nonlocal operations

Tq @0
Ty = 7

where a,b = x, y, z, giving the remaining nine generators:

Tyx, Tx_va Ty, r\'.x'.» T__\-'_vs T_\»‘:s T2y, T:._v.» T,

Physically these nonlocal generators originate from interaction between qubits. Their
presence in the system Hamiltonian in general leads to time evolution that affects the
state of both qubits and leads to changes of entanglement between both qubit.



The Lie brackets of all generators

[Ty Tyl | Tw Ty Ty Ty Ty, Ty Ty Ty T,, Ty
Tw 0 T -Tw 0 0 0 0 0 0 Tox
T\ -Tq 0 Tw 0 0 0 —T. —T:y —T.. 0
T:D T_N) _T.:(} 0 0 0 0 T'» X Tyy vz -T Lt
To. 0 0 0 0 To. -To | O T. -T. 0
Toy 0 0 0 | -Te. O To. | -Te. 0 T.. -T,.
TO)- 0 0 0 TO,\' _TO.x 0 T.t y - Tt 1 0 Tx ¥
Ty 0 T:.: _T_v x 0 Tx: -7, 0 TG: _TG_r T:O
Tn 0 T.:\ _T_n- _T:: 0 T, _TO: 0 Tox 0
Ty 0 T.. -T,. Ty —T 0 To, —Tu. 0 0
Tyx =T, 0 T, 0 Tye -T,, | -To 0 0 0
Tyy —Ty 0 y - -T,. 0 Tyy 0 -T, 0 -To:
T, -T.. 0 T, Ty —Tyx 0 0 0 -7, To,
T.: 1 T; X —Txx 0 0 T:: _T._l TN) 0 0 —T.—:ﬂ
Ty Ty, =Ty 0 -T,, 0 Tox 0 T 0 0
T.. T,, -T. 0 T, -T. 0 0 0 T 0




Cartan decomposition of SU(4)

Every unitary operation U € S U(4) can be expressed using the Cartan decomposi-
tion

i —" 1 .2 1 2
5| ¢ OOt ¢ OO0+ Oy 00
ki A ky =k ('—‘( | OxfaT 2 EyEyT 53 T2 ) k2

U

where k1, ky € SU(2)® S U(2) are local gates. The part A embodies purely non-local
content of the operation U and is generated by the maximal Abelian subalgebra of
S U(4) taht is spanned by the generators Ty, Tyy, and T-..

The Cartan decomposition is indispensable in classification of the two-qubit opera-
tions according to their non-local content.
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U = /\]Akg:/\[(’%

ki, ky e SUQ2)® SU(2)

Parameter counting:
6 + 3 + 6 = 15 = 42-1

If two gates have the same A in the Cartan decomposition, they are
locally equivalent:

Uy = kiUsrky



Local equivalence classes and the Weyl chamber

The Cartan decomposition contains extra symmetries, including interchanges of ¢
¢ and c¢3 with and without sign flips. These can be removed using theory of local
invariants and Weyl reflection symmetries. This allows us to classify the two-qubit
operations in terms of their local equivalence classes.

We say the operations U and U, are locally equivalent if /1 and U, are related by
local, i.e. single qubit operations: U| = k| U»k».

The set of all operations that are locally equivalent forms local equivalence class.

The set of all local equivalence classes forms the coset

SUA/SUR2)y®@SU(2).



Local invariants (Makhlin 2002, Zhang et al. 2003)

The local equivalence classes of two-qubit operations are most conveniently defined
using local invariants which uniquely characterize two-qubit operations up to an
arbitrary single qubit transformations k1, kr € SUR2) @ SU(2).

Unitary transformation of any U € S U(4) into the Bell basis

Ug = ULUUp=U kUpU-AU U KUy = O1FO5,
0 0 0 0

Q Q Q Q
(1 0 0 i
I 107 1 O
where Ug = @ 0 i -1 0
1 0 0 —i

changes k; and k; into orthogonal matrices O and O, respectively, with the property
070 = 1, and transforms the non-local factor of the Cartan decomposition A into a
diagonal matrix F.



Constructing the Makhlin matrix
m=ULUp=0lFOl0FO, = 0} F?0,

eliminates one of the local factors in the Cartan decomposition of U and shows that
0, diagonalizes the Makhlin matrix, indeed F2 = 0,mO? .

From the corresponding characteristic equation, we could derive the local invariants

g1 = %Re [tr 2(m)]
g = %Im [tr 2(m)]
g3 :ih%m—umﬂ.

Since the trace of a matrix is invariant w.r.t. a unitary transformation of the matrix,
the effect of the remaining local factor of the Cartan decomposition k, has been
eliminated, and the invariants indeed depend only on the matrix A.



For general two-qubit unitary matrices U € U(4) whose determinants are any com-
plex number of unit modulus, we can define the local invariants as

Re —trz(m)_
817 Tedet(U)

Im |tr2(m)
82 T Tedet()

[tr2(m) —tr (m2)]
83 = 4det(U)

where the division by det(U) eliminates the dependence on a global phase of U.



Example: Selected elements of the local equivalence class [CNOT]
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The local invariants of all these matrices from the group U(4) are

81

82

83

Re|tr2(m))
6dert)

Im|tr 2(m)—
6det )

[tr 2(m) — tr (m2)]

4det(U)
where det(U) = —1 for all the matrices in the example.
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Weyl chamber

point (gate) 1 Co
0, A (1)) 0, m 0
As ([DCNOTY) m/2 /2
A3 ([SWAP]) /2 /2
B ([B-Gate]) /2 7 /4
L (|CNOT)) /2 0
P ([V/'SWAP]) /4 /4
Q, M w/4, 3n/4 | /4
N 3n/4 | w/4
K /2 | «/4




Universal set of quantum computing operations

Universal set of quantum computing gates is the set of operations that allows us to
implement any computable function, i.e. any quantum computation algorithm or any
unitary operation over n qubits, on a quantum computer.

Universality in quantum computation means the ability to generate an arbitrary el-
ement of the group of special unitary operations over n qubits, that is, an arbitrary
element of the group S U(2").

Solovay-Kitaev theorem
Given a set of gates that is dense in S U(2") and closed under hermitian conjugation,

any gate U € SU(2") can be approximated to an accuracy € with a sequence of
poly[log(1/€)] gates from the set.



Universal quantum computation can be realized by a circuit of two-qubit and
single-qubit gates from a universal set.

Examples of universal sets:

(i) Continuous: S U(2) over any qubit, and CNOT on any pair of qubits.
(i) Discrete (approximation): Hadamard, phase flip Z, T, CNOT.



