
QUANTUM MECHANICS FOUNDATIONS OF QUANTUM INFORMATION
PROCESSING

OPERATORS



SECOND POSTULATE

Every measurable physical quantity A is described by an operator Â acting on H ;

this operator is an observable.

————–

An operator Â : H → F such that |ψ�� = Â|ψ� for

|ψ� ∈ H����
domain D(Â)

and |ψ�� ∈ F����
range R(Â)



Properties:

1. Linearity Â
�

i ci|φi� =
�

i ciÂ|φi�

2. Equality Â = B̂ iff Â|ψ� = B̂|ψ� and D(Â) = D(B̂)

3. Sum Ĉ = Â + B̂ iff Ĉ|ψ� = Â|ψ� + B̂|ψ�

4. Product Ĉ = ÂB̂ iff

Ĉ|ψ� = ÂB̂|ψ�
= Â

�
B̂|ψ�
�
= Â|B̂ψ�



5. Functions Â2 = ÂÂ, then Ân = ÂÂn−1 and if a function f (ξ) =
�

n anξn, then by
the function of an operator f (Â) we mean

f
�
Â
�
=
�

n
anÂn

e.g.

eÂ =

∞�

n=0

1
n!

Ân

We will see later how to calculate a function of an operator using its spectral
decomposition.



Iff the operator is diagonal, the function of the operator is obtained by
taking the function of each of its diagonal elements, its eigenvalues.

Example:
Let

Ẑ =

�
1 0
0 −1

�

then

Ŝ =
�

Ẑ =
� √

1 0
0
√
−1

�
=

�
1 0
0 i

�
=




1 0

0 eiπ/2






Commutator and anticommutator
In contrast to numbers, a product of operators is generally not commutative, i.e.

ÂB̂ � B̂Â

———–
For example: three vectors |x�, |y� and |z� and two operators R̂x and R̂y such that:

R̂x|x� = |x�, R̂y|x� = −|z�,
R̂x|y� = |z�, R̂y|y� = |y�,
R̂x|z� = −|y�, R̂y|z� = |x�

then

R̂xR̂y|z� = R̂x|x� = |x� �
R̂yR̂x|z� = −R̂y|y� = −|y�

—————



An operator
�
Â, B̂
�
= ÂB̂ − B̂Â is called commutator.

We say that Â and B̂ commute iff
�
Â, B̂
�
= 0 in which case also

�
f (Â), f (B̂)

�
= 0.

An operator
�
Â, B̂
�
= ÂB̂ + B̂Â is called anticommutator.

Basic properties:
�
Â, B̂
�
= −

�
B̂, Â
�

�
Â, B̂
�
=
�
B̂, Â
�

�
Â, B̂ + Ĉ

�
=
�
Â, B̂
�
+
�
Â, Ĉ
�

�
Â, B̂Ĉ

�
=
�
Â, B̂
�
Ĉ + B̂

�
Â, Ĉ
�

the Jacobi identity:
�
Â,
�
B̂, Ĉ
��
+
�
B̂,
�
Ĉ, Â
��
+
�
Ĉ,
�
Â, B̂
��
= 0



Types of operators (examples)

1. Â is bounded iff ∃β > 0 such that
���Â|ψ�

��� ≤ β �|ψ�� for all |ψ� ∈ D(Â). Infimum of
β is called the norm of Â

2. Â is symmetric if �ψ1|Âψ2� = �Âψ1|ψ2� for all |ψ1�, |ψ2� ∈ D(Â).

3. Â is hermitian if it is bounded and symmetric.

4. Let Â be a bounded operator (with D(Â) dense inH); then there is an adjoint operator Â†

such that

�ψ1|Â†ψ2� = �Âψ1|ψ2�



i.e.

�ψ1|Â†ψ2� = �ψ2|Âψ1�∗

for all |ψ1�, |ψ2� ∈ D(Â).

Properties:
����Â†
���� =

���Â
���

�
Â†
�†
= Â

�
Â + B̂

�†
= Â† + B̂†

�
ÂB̂
�†
= B̂†Â† (the order changes)

�
λÂ
�†
= λ∗Â†



How can we construct an adjoint?

E.g. Let us have an operator in a matrix representation (so it is also a matrix)

then

Â† =
�
AT�∗ = transpose & complex conjugation

5. Â is selfadjoint if Â† = Â.

This is the property of observables!

Their eigenvalues are real numbers, e.g. X̂|x� = x|x�

6. Â is positive if �ψ|Â|ψ� ≥ 0 for all |ψ� ∈ H

7. Â is normal if ÂÂ† = Â†Â i.e.

�
Â, Â†

�
= 0

������������������
commutator



8. Let Â be an operator. If there exists an operator Â
−1

such that ÂÂ
−1 = Â

−1
Â = 1̂

(identity operator) then Â
−1

is called an inverse operator to Â

Properties:

�
ÂB̂

�−1
= B̂

−1
Â
−1

�
Â
†�−1

=
�
Â
−1�†

9. an operator Û is called unitary if Û
† = Û

−1
, i.e. ÛÛ

† = Û
†
Û = 1̂.

Formal solution of the Schrödinger equation leads to a unitary operator: if Ĥ is

the Hamiltonian (total energy operator),

i�
d
dt
|ψ(t)� = Ĥ|ψ(t)�

⇒
�

t

0

d|ψ(t�)�
|ψ(t�)� = −

i

�

�
t

0
Ĥdt
�



If the Hamiltonian is time independent then

|ψ(t)� = e
− i

�Ĥt|ψ(0)� = Û |ψ(0)�

10. An operator P̂ satisfying P̂ = P̂
† = P̂

2
is a projection operator or projector

e.g. if |ψk� is a normalized vector then

P̂k = |ψk��ψk|
is the projector onto one-dimensional space spanned by all vectors linearly de-

pendent on |ψk�.



Matrix representation of quantum computing operations



Matrix representation in general
Operator is uniquely defined by its action on the basis vectors of the Hilbert space.
Let B =

�
|ψ j�
�

be a basis of H (= D(Â))

Â|ψ j� =
�

k
|ψk��ψk|Â|ψ j�

=
�

k
Ak j|ψk�

where Ak j = �ψk|Â|ψ j� are the matrix elements of the operator Â in the matrix repre-
sentation given by the basis B.
For practical calculations

Â =
�

k j
|ψk��ψk|Â|ψ j��ψ j| =

�

k j
Ak j|ψk��ψ j|



Single-qubt operations in the standard computational basis

(i) Phase flip

Ẑ =



�

k=0,1
|k��k|


 Ẑ



�

l=0,1
|l��l|

 =
�

k,l
�k|Ẑ|l� |k��l|

= �0|Ẑ|0�|0��0| + �0|Ẑ|1�|0��1| + �1|Ẑ|0�|1��0| + �1|Ẑ|1�|1��1|

= �0|Ẑ|0�
�

1
0

� �
1 0

�
+ �0|Ẑ|1�

�
1
0

� �
0 1

�

+ �1|Ẑ|0�
�

0
1

� �
1 0

�
+ �1|Ẑ|1�

�
0
1

� �
0 1

�

=

�
�0|Ẑ|0� �0|Ẑ|1�
�1|Ẑ|0� �1|Ẑ|1�

�
=

�
1 0
0 −1

�
= σz



(ii) Bit flip

X̂ =

�
�0|X̂|0� �0|X̂|1�
�1|X̂|0� �1|X̂|1�

�
=

�
0 1
1 0

�
= σx

(iii) Ŷ = iẐX̂

Ŷ =

�
�0|Ŷ |0� �0|Ŷ |1�
�1|Ŷ |0� �1|Ŷ |1�

�
=

�
�0|iẐX̂|0� �0|iẐX̂|1�
�1|iẐX̂|0� �1|iẐX̂|1�

�
=

�
0 −i
i 0

�
= σy



(iv) Ŝ =
√

Ẑ

Ŝ =

�
1 0
0 i

�

(v) T̂ =
�

Ŝ

T̂ =

�
1 0
0 eiπ/4

�



(vi) Hadamard gate

Ĥ =

�
�0|Ĥ|0� �0|Ĥ|1�
�1|Ĥ|0� �1|Ĥ|1�

�
=




1√
2

1√
2

1√
2
− 1√

2



=

1√
2
�
σx + σz

�



Two-qubt operations in the standard computational basis

(i) CNOT12 (the first qubit is the control qubit, the second is the target):

CNOT12 =




1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0



= |0��0| ⊗ Î + |1��1| ⊗ X̂ = P̂0 ⊗ Î + P̂1 ⊗ X̂

(ii) CNOT21:

CNOT21 =




1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0



= Î ⊗ |0��0| + X̂ ⊗ |1��1| = Î ⊗ P̂0 + X̂ ⊗ P̂1



(iii) S WAP = CNOT12CNOT21CNOT12

S WAP =




1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0







1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0







1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0



=




1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1






Composition of operators (by example)



1. Direct sum Â = B̂ ⊕ Ĉ
B̂ acts on HB (2 dimensional) and Ĉ acts on HC (3 dimensional)
Let

B̂ =
�

b11 b12
b21 b22

�
and Ĉ =




c11 c12 c13
c21 c22 c23
c31 c32 c33




Â =




b11 b12 0 0 0
b21 b22 0 0 0
0 0 c11 c12 c13
0 0 c21 c22 c23
0 0 c31 c32 c33




Acts on HB ⊕HC



Properties:

Tr
�
B̂ ⊕ Ĉ

�
= Tr

�
B̂
�
+ Tr
�
Ĉ
�

det
�
B̂ ⊕ Ĉ

�
= det

�
B̂
�

det
�
Ĉ
�



2. Direct product Â = B̂ ⊗ Ĉ:

|ψ� ∈ HB, |φ� ∈ HC, |χ� ∈ HB ⊗HC

Â|χ� =
�
B̂ ⊗ Ĉ

�
(|ψ� ⊗ |φ�)����������������

|ψ�|φ� to simplify the notation
= B̂|ψ�Ĉ|φ�

Â =


b11c11 b11c12 b11c13 b12c11 b12c12 b12c13
b11c21 b11c22 b11c23 b12c21 b12c22 b12c23
b11c31 b11c32 b11c33 b12c31 b12c32 b12c33
b21c11 b21c12 b21c13 b22c11 b22c12 b22c13
b21c21 b21c22 b21c23 b22c21 b22c22 b22c23
b21c31 b21c32 b21c33 b22c31 b22c32 b22c33






Examples Hadamard gates

Ĥ =




1√
2

1√
2

1√
2
− 1√

2




on two qubit states:

(i) Hadamard gate on the second qubit:

Î ⊗ Ĥ =




1.Ĥ 0.Ĥ

0.Ĥ 1.Ĥ


 =




1√
2

1√
2

0 0

1√
2
− 1√

2
0 0

0 0 1√
2

1√
2

0 0 1√
2
− 1√

2






(ii) Hadamard gate on the first qubit:

Ĥ ⊗ Î =




1√
2
.Î 1√

2
.Î

1√
2
.Î − 1√

2
.Î



=




1√
2

0 1√
2

0

0 1√
2

0 1√
2

1√
2

0 − 1√
2

0

0 1√
2

0 − 1√
2






(iii) Hadamard gates on both qubits:

Ĥ ⊗ Ĥ =




1√
2
.Ĥ 1√

2
.Ĥ

1√
2
.Ĥ − 1√

2
.Ĥ



=




1
2

1
2

1
2

1
2

1
2 −

1
2

1
2 −1

2

1
2

1
2 −1

2 −
1
2

1
2 −

1
2 −

1
2

1
2






Eigenvalues and eigenvectors

Solving a quantum mechanical system means to find the eigenvalues and eigenvec-

tors of the complete set of commuting observables (C.S.C.O.)

1. The eigenvalue equation

Â|ψα� = α����
eigenvalue

|ψα�����
eigenvector

If n > 1 vectors satisfy the eigenvalue equation for the same eigenvalue α, we

say the eigenvalue is n-fold degenerate.



2. The eigenvalues of a self-adjoint operator Â, which are observables and repre-
sent physical quantities, are real numbers

α�ψα|ψα� = �ψα|Âψα�
= �Âψα|ψα�∗ = α∗�ψα|ψα�

⇒ α = α∗ ⇒ α ∈ R



3. Eigenvectors of self-adjoint operators corresponding to distinct eigenvalues are
orthogonal.
Proof: if β � α is also an eigenvalue of Â then

�ψα|Âψβ� = β�ψα|ψβ�
and also

�ψα|Âψβ� = �ψβ|Âψα�∗

= α∗�ψβ|ψα�∗ = α�ψα|ψβ�
which implies

�ψα|ψβ� = 0



Spectral decomposition of an operator

Assume that the eigenvectors of Â define a basis B =
�
|ψ j�
�
,

then Ak j = �ψk|Â|ψ j� = α jδk j.

Operator in this basis is a diagonal matrix with eigenvalues on the diagonal

Â =
�

k j
Ak j|ψk��ψ j|

=
�

j
α j|ψ j��ψ j|

=
�

j
α jÊ j

Ê j is a projector onto 1-dim. space spanned by |ψ j� ⇒ Spectral decomposition!



Function of an operator using its spectral decomposition

f (Â) =
�

j
f (α j)|ψ j��ψ j| =

�

j
f (α j)Ê j

If and only if the operator is diagonal, the function of the operator is obtained by tak-
ing the function of each of its diagonal elements, its eigenvalues.

Example:

Ŝ =
�

Ẑ =
� √

1 0
0
√
−1

�
=

�
1 0
0 i

�
=




1 0

0 eiπ/2





