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FIRST POSTULATE

At a fixed time t, the state of a physical system is defined by specifying a ket |ψ(t)�
belonging to the state space H .

The state space is a space of all possible states of a given physical system, and it is
a Hilbert space, i.e.

(1) a vector space over the field of complex numbers C
(2) with inner product, and
(3) with a norm and a metric induced by the inner product, and
(4) it is also a complete space (relevant to infinite dimensions).



Definition of a vector space.
A vector space over the field of complex numbers C is a set of elements, called
vectors, with an operation of addition, which for each pair of vectors |ψ� and |φ�
specifies a vector |ψ� + |φ�, and an operation of scalar multiplication, which for each
vector |ψ� and a number c ∈ C specifies a vector c|ψ� such that (s.t.)
1) |ψ� + |φ� = |φ� + |ψ�
2) |ψ� + (|φ� + |χ�) = (|ψ� + |φ�) + |χ�
3) there is a unique zero vector s.t. |ψ� + 0 = |ψ�
4) c(|ψ� + |φ�) = c|ψ� + c|φ�
5) (c + d)|ψ� = c|ψ� + d|ψ�
6) c(d|ψ�) = (cd)|ψ�
7) 1.|ψ� = |ψ�
8) 0.|ψ� = 0
Example:
A set of N-tuples of complex numbers.



An inner product.
Dirac bra-ket notation:

|ψ�, |φ� ∈ H
�φ|ψ� ∈ C

A bra �φ| is the adjoint of a ket |φ�, e.g.

if |ψ� = c1|φ1� + c2|φ2�,
then �ψ| = c∗1�φ1| + c∗2�φ2|

We call |φ1� and |φ2� a basis (or basis elements) of H if and only if

span{|φ1�, |φ2�} = H
and �φi|φ j� = δi j

where δi j is the Kronecker delta-symbol. And with a norm and metric induced by the
inner product.



Norm:

e.g. �φi|φ j� = δi j i.e.

�φ1|φ1�1/2 = �φ1� = 1
≡ the norm of |φ1�

If the norm is 1, the state is said to be normalized, i.e. its length equals 1.

Two vectors are orthogonal if their inner product is zero. A set of mutually orthogonal
vectors of unit norm is said to be orthonormal.



Metric: a metric is a map which assigns to each pair of vectors |ψ�, |φ� a scalar ρ ≥ 0
such that

1. ρ (|ψ�, |φ�) = 0 iff |ψ� = |φ�;

2. ρ (|ψ�, |φ�) = ρ (|φ�, |ψ�)

3. ρ (|ψ�, |χ�) ≤ ρ (|ψ�, |φ�) + ρ (|φ�, |χ�) (triangle identity)

We say that the metric is induced by the norm if

ρ (|ψ�, |φ�) = �|ψ� − |φ��
So the Hilbert space is normed and a metric space. What else?



It is also a complete space so every Cauchy sequence of vectors, i.e.

�|ψn� − |ψm�� → 0 as m, n→ ∞
converges to a limit vector in the space.

(We need this condition to be able to handle systems with infinite-dimensional Hilbert

spaces, i.e. with infinite degrees of freedom.)

Can we be more concrete about quantum states? What really is a ket |ψ�?

Now, we need the concept of representation.

Let us say we have the Hilbert space H and the basis

B = {|φ1�, |φ2�}



and we have a ket

|ψ� ∈ H
which we wish to express in the representation given by the basis B.

We use the completeness relation
�

i
|φi��φi| = 1̂

as follows

|ψ� =
�

i
|φi� �φi|ψ�����

a number∈C
=
�

i
ci|φi�

Our state becomes a specific superposition of the basis set elements, i.e. we have

expanded |ψ� in terms of {|φi�}.



Quantum bit

Quantum bit or qubit is a two dimensional Hilbert space H2 � C2
. Its values

are vectors, states, or kets, from this Hilbert space:

|φ� = c0|0� + c1|1� =
�

c0
c1

�

The vectors |0� and |1� are the basis vectors from the standard computational ba-
sis:

B = {|0�, |1�} =
��

1
0

�
,

�
0
1

��

so that H2 = span (B). The conjugate bra �φ| = c∗0�0| + c∗1�1| =
�

c∗0 c∗1
�

The coefficients c0 and c1 are complex numbers, c0, c1 ∈ C, satisfying |c0|
2+ |c1|

2 = 1.



Recall that multiplying a quantum states by global phase, a complex number of unit
modulus e

iθ, has no observable consequences:

|φ� = c0|0� + c1|1� → |φ�� = e
iθ|φ� = c0e

iθ|0� + c1e
iθ|1� = c

�
0|0� + c

�
1|1�

The probability of obtaining the measurement result 0 or 1 when measuring the qubit
in the standard basis remains the same:

���c�0
���2 = c

�∗
0 c
�
0 = c

∗
0e
−iθ

c0e
iθ = c

∗
0c0 =

���c0
���2

���c�1
���2 = c

�∗
1 c
�
1 = c

∗
1e
−iθ

c1e
iθ = c

∗
1c1 = |c1|2

The expectation value or average value of an observable Ô, obtained from its re-
peated measurement on the qubits in an equally prepared state, is also invariant
with the global phase:

< Ô >φ�= �φ�|Ô|φ�� = e
−iθ

e
iθ�φ|Ô|φ� =< Ô >φ

This suggests that we need three real numbers to specify a state of one qubit.



Density operator/matrix

We can represent a qubit state |φ�, and any quantum state, by the projector onto
the one-dimensional subspace it spans:

ρ̂ = |φ��φ| = �c0|0� + c1|1�
� �

c∗0�0| + c∗1�1|
�

=
���c0
���2 |0��0| + c0c∗1 |0��1| + c∗0c1 |1��0| + |c1|2 |1��1|

In matrix representation given by the standard computational basis, we have

ρ̂ =

�
ρ00 ρ01
ρ10 ρ11

�
=

�
c0
c1

� �
c∗0 c∗1

�
=




���c0
���2 c0c∗1

c∗0c1 |c1|2




We observe that the norm of a state is Tr(ρ̂) = |c0|2+ |c1|2 = 1 and also that ρ10 = ρ
∗
01.



Bloch representation

The single-qubit density matrix can be decomposed as follows

ρ̂ =
1
2

�
Î + �r . �σ

�
=

1
2

�
Î + rx σx + ry σy + rz σz

�

=
1
2

��
1 0
0 1

�
+ rx

�
0 1
1 0

�
+ ry

�
0 −i
i 0

�
+ rz

�
1 0
0 −1

��

where σx, σy, and σz are the Pauli matrices.

The vector �r =
�
rx, ry, rz

�
is called the Bloch vector and its components, real num-

bers between 0 between 1, are related to the density matrix elements as follows:

rx = 2 Re
�
ρ10
�

ry = 2 Im
�
ρ10
�

rz = ρ00 − ρ11



Examples

To construct their Bloch representation of pure states of one qubit (mixed states
will come later) we use

rx = 2 Re
�
ρ10
�
= 2 Re

�
c∗0c1
�

ry = 2 Im
�
ρ10
�
= 2 Im

�
c∗0c1
�

rz = ρ00 − ρ11 =
���c0
���2 − |c1|2



1. |φ� = |0�

ρ̂ = |0��0| =
�

1
0

� �
1∗ 0∗

�
=

�
1 0
0 0

�
⇒ �r = (0, 0, 1)

2. |φ� = |1�

ρ̂ = |1��1| =
�

0
1

� �
0∗ 1∗

�
=

�
0 0
0 1

�
⇒ �r = (0, 0,−1)

3. |φ� = 1√
2

(|0� + |1�)

ρ̂ = |φ��φ| =




1√
2

1√
2




�
1√
2
∗ 1√

2
∗
�
=

1
2




1 1

1 1


 ⇒ �r = (1, 0, 0)



4. |φ� = 1√
2

(|0� − |1�)

ρ̂ = |φ��φ| =




1√
2

− 1√
2




�
1√
2
∗ − 1√

2
∗
�
=

1
2




1 −1

−1 1


 ⇒ �r = (−1, 0, 0)

5. |φ� = 1√
2

(|0� + i|1�)

ρ̂ = |φ��φ| =




1√
2

i 1√
2




�
1√
2
∗
�
i 1√

2

�∗ �
=

1
2




1 −i

i 1


 ⇒ �r = (0, 1, 0)



Bloch sphere

The set of all Bloch vectors for single qubit pure states form a surface of a sphere of
unit radius.

Examples

|φ� = |1� |φ� = 1√
2

(|0� + |1�) |φ� = 1√
2

(|0� + i|1�)
�r = (0, 0,−1) �r = (1, 0, 0) �r = (0, 1, 0)



Composition of Hilbert spaces

A tensor product of vector spaceV andU is a vector spaceW whose dimension is
(dimV).(dimU).

Let BU = {|u1�, |u2�, . . . , |un�} be a basis of U and BV = {|v1�, |v2�, . . . , |vn�} be a
basis of V, then a basis of W = U ⊗V is BW = {|u1v1�, |u1v2�, . . . , |unvn�} where
|ukvl� = |uk� ⊗ |vl�.

Example

Let BU = {|0�, |1�}, BV = {|0�, |1�}, then BW = {|00�, |01�, |10�, |11�}.



Qubits

A quantum state of n qubits is a vector in 2n
-dimensional Hilbert space:

n�

k=1
H

2 = H2 ⊗H2 ⊗ ...H2
(n-times) = H2n

The standard computational basis of n-qubit Hilbert space:

B
H2n = {|0 . . . 000�, |00 . . . 001�, |00 . . . 010�, |00 . . . 011�, . . . |1 . . . 111�}

Example: The standard basis of a two-qubit Hilbert space

B
H4 = {|00�, |01�, |10�, |11�}



Examples of two-qubit states:
(i) Composite product states

|φ� = |0� ⊗ |0� = |0�|0� = |00�
|ψ� = �c0|0� + c1|1�

� ⊗ |0� = c00|00� + c10|10�
(ii) Entangled states: the Bell states

|β00� =
1√
2

(|00� + |11�)

|β01� =
1√
2

(|01� + |10�)

|β10� =
1√
2

(|00� − |11�)

|β11� =
1√
2

(|01� − |10�)



Superdense coding

Task:
Alice wants to send two classical bits of information, that is one of the bit strings
{00, 01, 10, 11}, to Bob.

Resources:
i) Alice and Bob share two qubits in the Bell state |β00� = 1√

2
(|00� + |11�)

ii) Alice can send her one quantum bit to Bob.



Superdense coding protocol

1. Alice and Bob share two qubits in the Bell state |β00� = 1√
2

(|00� + |11�).
2. Depending on what bit string, 00, 01, 10, 11, Alice wants to send to Bob, she applies
one of the following transformations to her qubit:

00 : Î : |β00� = 1√
2

(|00� + |11�) → |β00� = 1√
2

(|00� + |11�)
01 : Ẑ : |β00� = 1√

2
(|00� + |11�) → |β10� = 1√

2
(|00� − |11�)

10 : X̂ : |β00� = 1√
2

(|00� + |11�) → |β01� = 1√
2

(|01� + |10�)
11 : ẐX̂ = iŶ : |β00� = 1√

2
(|00� + |11�) → |β11� = 1√

2
(|01� − |10�)

3. The resulting Bell states are orthogonal and hence Bob can distinguish them by a
measurement in the Bell basis.

One qubit is sufficient to transmit two bits of classical information.



Einstein-Podolsky-Rosen paradox

The measurement of one qubit of an entangled two-qubit state completely deter-

mines the state of the other qubit after the measurement even if both qubits are

spatially separated. This implies that the first qubit communicates with the other

instantaneously, that is, faster than light, across the space ⇒ spooky action at a

distance - A. Einstein.

Resolving the paradox:

Hidden variables theory: Quantum mechanics can not be complete. There must

be some unknown mechanism acting on quantum mechanical variables to give rise

to observable effects of noncommutative quantum observables like Heisenberg un-

certainty principle.

Bell inequalities: No hidden variable theory.



Bell inequalities John S. Bell 1962

Alice and Bob share a two-particle system.

Each can perform one of two different measurements and they can decide which
measurement to perform by flipping a coin once they receive a particle. The mea-
surement outcome can be +1 or −1.

Alice can measure physical properties of her particle PQ or PR, and Bob can mea-
sure properties PS or PT of his particle; both measurements take place at the same
time.



We calculate the quantity

QS + RS + RT − QT = (Q + R)S + (R − Q)T

Because R,Q = ±1 it follows that either

(Q + R)S = 0 or (R − Q)T = 0

In either case

QS + RS + RT − QT = ±2



Suppose that p(q, r, s, t) is the probability that before the measurements, the system
is in the state where Q = q, R = r, S = s, and T = t.
The mean value

E(QS + RS + RT − QT ) =
�

q,r,s,t
p(q, r, s, t)(qs + rs + rt − qt) ≤

�

q,r,s,t
p(q, r, s, t) × 2 = 2

Also

E(QS + RS + RT − QT ) =
�

q,r,s,t
p(q, r, s, t)qs +

�

q,r,s,t
p(q, r, s, t)rs

+
�

q,r,s,t
p(q, r, s, t)rt −

�

q,r,s,t
p(q, r, s, t)qt

= E(QS ) + E(RS ) + E(RT ) − E(QT )

Comparing both gives the Bell inequality

E(QS ) + E(RS ) + E(RT ) − E(QT ) ≤ 2



Now let Alice and Bob share a quantum system of two qubits in the state

|ψ� = |01� − |10�√
2

( = |β11� )

They perform measurements of the following observables:

Alice: Q = Ẑ1 R = X̂1 Bob: S = −Ẑ2−X̂2√
2

T = Ẑ2−X̂2√
2

The expectation values of these observables are

< QS >=
1√
2

; < RS >=
1√
2

; < RT >=
1√
2

; < QT >= − 1√
2

Thus quantum mechanical systems violate the Bell inequality:

< QS > + < RS > +RT > − < QT >= 2
√

2

Experiment: Alain Aspect 1982.



Evaluation of the expectation values:

< QS > = �ψ|−Ẑ1 ⊗ Ẑ2 − Ẑ1 ⊗ X̂2√
2

|ψ� = 1
2
√

2
(�01| − �10|)(−Ẑ1 ⊗ Ẑ2 − Ẑ1 ⊗ X̂2)((|01� − |10�)

=
1

2
√

2
(�01|(−Ẑ1 ⊗ Ẑ2)|01� + �10|(−Ẑ1 ⊗ Ẑ2)|10�) = 1

2
√

2
(1 + 1) =

1√
2

< RS > = �ψ|−X̂1 ⊗ Ẑ2 − X̂1 ⊗ X̂2√
2

|ψ� = 1√
2

< RT > = �ψ|X̂1 ⊗ Ẑ2 − X̂1 ⊗ X̂2√
2

|ψ� = 1√
2

< QT > = �ψ|Ẑ1 ⊗ Ẑ2 − Ẑ1 ⊗ X̂2√
2

|ψ� = − 1√
2



Entanglement on bipartite systems

Theorem: Schmidt’s decomposition

Suppose |ψ� is a pure state of a bipartite system, AB. Then there exist orthonormal
states |iA� for system A, and |iB� for system B such that

|ψ� =
�

i
λi |iA�|iB�

where λi are non-negative real numbers satisfying
�

i λ
2
i = 1 known as the Schmidt

coefficients.

The number of non-zero values λi is called the Schmidt number.



Proof

Let us assume for the sake of simplicity that the Hilbert spaces for the system A
and the system B have the same dimension. Let {| j�} and {|k�} be any fixed basis for

systems A and B, respectively. Then |ψ� can be written as

|ψ� =
�

jk
a jk | j�|k�

for some matrix a of complex numbers a jk.

By singular value decomposition, a = udv, where d is a diagonal matrix with non-

negative real elements, and u and v are unitary matrices. Thus

|ψ� =
�

i jk
u jidiivik | j�|k�



Defining |iA� =
�

j u ji | j� and |iB� =
�

k vik |k�, and λi = dii we get

|ψ� =
�

i
λi |iA�|iB�

Both |iA� and |iB� form orthonormal sets. This follows from the unitarity of u and v
and orthonormality of | j� and |k�. Q.E.D.

If the Schmidt number is 1, then the quantum state of the bipartite system
is a product state, otherwise it is an entangled states.



Examples
(i) Schmidt number = 1
a) Let us have the state |ψ� = 1√

2
(|00� + |01�. The matrix a is then

a =




1√
2

1√
2

0 0




Now we construct the matrix aa†

aa† = udvv†d†u† = ud2u† =




1 0

0 0




where d = d† because d is diagonal matrix with real entries.The matrix aa† is already
diagonal and has one nonzero eigenvalue.Thus the state |ψ� is a product state.



b) Let us have the state |ψ� = 1
2(|00� + |01� − |10� − |11�). The matrix a is then

a =




1
2

1
2

−1
2 −

1
2




Now we construct the matrix aa†

aa† =




1
2 −1

2

−1
2

1
2




The matrix aa† is not diagonal so we have to diagonalize it. The eigenvalues are
given as the roots of the characteristic equation

det
�
aa† − λÎ

�
=

�
1
2
− λ
�2
− 1

4
= 0

we get λ1 = 1 and λ2 = 0, so the state is again a product state.



(ii) Schmidt number = 2
a) Let us have the state |ψ� = 1√

2
(|00� + |11�. The matrix a is then

a =




1√
2

0

0 1√
2




Now we construct the matrix aa†

aa† = udvv†d†u† = ud2u† =




1
2 0

0 1
2




The matrix aa† is diagonal and has two nonzero eigenvalues.Thus the state |ψ� is
entangled.



b) Let us have the state |ψ� = 1√
2
(|01� − i|10�. The matrix a and a† are then

a =




0 1√
2

−i 1√
2

0




a† =




0 i 1√
2

1√
2

0




Now we construct the matrix aa†

aa† =




1
2 0

0 1
2




The Schmidt number thus equals to 2, and therefore the state |ψ� is entangled.


