QUANTUM ERROR CORRECTION
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Example
Let us consider a symmetric binary channel with a bit flip error occurring with proba-
bility p.

If we use one physical bit to represent one bit of information, then the error will
destroy the information with probability p.

But we can encode the information into several physical bits, so the error, occurring
with not too high probability p, will not be able to flip the logical bit even if it flips some
of the physical bits of the code.



Encoding using repetition code:

0 — 000
| s 111

For example, after sending the logical qubit through the channel, we get 100 as the
output. For small p, we can conclude that the first bit was flipped and that the input

bit was 0.

The probability that two or more bits are flipped is

,)grr()r — 3])2(1 - ])) + 1)3 — 31)2 - 2[)3

If p < 1/2 then the encoded information is transmitted more reliably: perror < p.



Quantum error correction

Quantum information faces some nontrivial difficulties which have no analog in clas-
sical information processing:

1) No-cloning: duplicating quantum states to get repetition code is impossible.
2) Errors are continuous: a continuum of different errors can occur on a single
qubit; determining which error occurred in order to correct it would require infinite

precision (i.e. resources).

3) Measurement destroys quantum information: Classical information can be ob-
served without destroying it and then decoded, but quantum information is destroyed
by measurement and can not be recovered.

Despite these difficulties, quantum error correction is possible.



Three qubit bit flip code: encoding

Let us consider a symmetric binary quantum channel with a quantum bit flip error, X,

occurring with probability p. 1
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Encoding of a qubit /) = ¢p|0) + ¢{|1) using the repetition code:
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Three qubit bit flip code: error detection

We need to measure what error occurred on the quantum state, that is, error syn-
drome. For bit flip error there are four error syndroms corresponding to the projec-
tors:
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|000)000] + |111)(111) no error
Py = |100){100] +|011)(011| bit flip error on first qubit
P> = |010)(010] + |101)¢101|] bit flip error on second qubit
Py = |001)001]| + |110){110] bit flip error on third qubit
Assuming the error happens on the first qubit, so the corrupted state is

W) = cp|100) + ¢1|011)

then (/|P &) = 1 reveals that the bit flip occurred on the first qubit. However, it does
not destroy the qubit superposition, so we learn only about where error occurred but
no information about the state itself.



Three qubit bit flip code: recovery
Error syndrome is used to recover the original quantum state.

In our example, the error syndrome implies we need to apply bit flip on the first qubit
to correct the error.

Similarly, other syndromes imply different recovery procedure.



Three qubit bit flip code: fidelity analysis
Error analysis:

The error correction works perfectly, if bit flips occur on at most one of the three
qubits.

The probability of an error which remains uncorrected is then 3p% — 2p?, like in the
classical case.

However, the effect of an error on a state depends on the state also. To analyze the
errors properly, we use the fidelity.



Example:

The objective (of the error correction) is to increase the minimal fidelity to its maxi-
mum. Suppose the bit flip error channel, and |) as the state of interest.

Without using the error correcting code: the state after the error channel is
p=(1=p) Wl + p Xlg)ylX
and the fidelity is
Fo = Wlolw) = (1 = p) + p WIXW)(WIXIy)

since the second term is nonnegative and equals to zero for ) = |0) the minimum

fidelity is Fo = /1 — p.




With using the three qubit bit flip code: the state after the error channel is

[(1=p) +3p(1=p)lo+...
and the fidelity is

Frc = WIoW) = (1= p)+3p(1 = p2 = {1 =3p2 + 2p3

so the fidelity is improved by using the error correcting code provided p < 1/2.

For example, if the error probability is 0.2 then the fidelities are respectively

Fop = 0.89
Fre = 0.98



Three qubit bit flip code: towards generalization

A different look at syndrome measurement: Instead of measuring the projectors Py,
Py, P>, and P53, we perform two measurements of the following observables

VAVAR A VA Y Ly =1072Z1~7Z

Each of these observables has eigenvalue +1 and —1, so both measurements pro-
vide the total of two bits of information, that is four possible syndromes, without re-
vealing the qubit state, i.e. without collapsing the state.



The first measurement, Z,Z,, can be seen as comparing whether the first and second
qubit are the same; the spectral decomposition

Z1Z> = (|00)00] + [11)(11) @ 1 = (JO1)(01] + |[10)(10) & 1

shows that this observable corresponds to two projective measurements with eigen-
value +1 f both qubits are the same or —1 if they are different.

Similarly, Z,Z3 compares values of the second and third qubit.

By combining both measurements, we can determine where the error occurred:

217, =
L1 =
2124y =
217, =

no error
bit flip error on first qubit
bit flip error on second qubit
bit flip error on third qubit



Three qubit phase flip code: encoding

This error channel flips the relative phase between |0) and |1) with probability p and
is given by the quantum operation

WXyl = p=0=-p) Wl +pZIp)YIZ

We know that HZH = X, where H is the Hadamard gate. That is the phase flip acts
as the bit flip in the basis
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This suggests that the following encoding of a qubit |) = ¢p|0) + ¢1|1) is appropriate
for the phase flip error

0y = 0L =[+++)

1) - ) =--=)

) — L) = col + ++) + ci| = =)

ly> — 1 1H[ )

0> oD Hi e
0> S—H—




Three qubit phase flip code: error detection

Error is detected using the same projective measurements as for the bit flip error
detection conjugated with Hadamard rotations:

Pj=H® P;H®

Alternatively, the syndrome measurements can be performed using the observables

H® 7,7, H®® = XX, H®? 7,73 H®? = X,X,

Measurement of these observables corresponds to comparing the signs of qubits,
for example XX, gives the eigenvalue +1 for |+ +)®|.)and | - -)®| . ), and the
eigenvalue -1 for|+ —-)®|.)and |- +)®] . ).



Three qubit phase flip code: recovery

Error correction is completed with the recovery operation, which is the Hadamard
conjugated recovery operation of the bit flip code.

For example, if the phase flip, that is the flip from |+) and |-) and vice versa, was
detected on the second qubit, then the recovery operation is H X, H = Z,.

Remark:

This code for the phase flip channel obviously has the same characteristics, i.e.
the minimum fidelity etc., as the code for the bit flip channel. These two codes are
unitarily equivalent, that is, they are related to each other by a unitary transformation.



Three qubit phase flip code: example

The phase flip error creates a mixed state

p=0=-3p) W)Wl +pZi WL)XWL Z1+ p Za W)Wl Za + p Z3 W)Yl Z3

from the original encoded pure state

Wr) = col + ++) + ¢ ——=)
Error syndrome measurement using the observables X X> and X, X3 yields the eigen-
values —1 and —1 and collapses the mixed state into the pure state with the phase
error on the second qubit

W) = col + —+) +cf| = +=)

The original state can now be recovered by applying the phase flip Z-.



The Shor nine-qubit code

This code protects against arbitrary error on a single qubit. It is a concatenation of
the three qubit bit flip code and three qubit phase flip code

07) = %(IOOO) +|111)) @ (|000) + [111)) & (|000) + |111}))

= ——(]000) - 000) — 000) = |111
11L) \/2—3(IU( ) = [111)) @ (|000) — [111)) & (|000) — [111})
The qubit is first encoded using the phase flip code and then it is encoded using the
bit flip code. The result is the nine qubit Shor code. > H
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The Shor code: bit flip error

The encoded single qubit state is given as

_ 0
W)y = \/2_3(|000) +[111)) @ (|J000) + |111)) @ (J000) + |[111))
(]
+——=(|000) = |111)) @ (J000) — |111)) @ (|000) — |111))
V23

Let us assume that the bit flip error happens on the 4th qubit, so the resulting state
after the syndrome measurement would be

Wy = —2=(1000) + |111) ® (|100) + [011)) @ (|000) + |111))
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(|000) = |111)) @ (]100) = [011)) ® (J0O00) —|111}))



Error syndromes are all obtained by measuring the following six observables
L2y Zhly Zyls Zsly Zqlyg ZgZog

which detect the bit string parity of neighboring pair of qubits on each of the three-
qubit blocks. The result in our example is

+1 + 1 -1 + 1 + 1 + 1

and thus indicates that the bit flip error happened on the fourth qubit, that is, the first
qubit of the second block.

The original state is recovered by applying the bit flip X}.



The Shor code: phase flip error

The encoded single qubit state is given as

- 0
W) = \/2_3(|000> + 111 @ (|000) + |[111)) @ (|000) + [111))
]
+——(]000) — |111}) @ (J000) — |111}) @ (J000) — |111})
V23

Let us assume that the phase flip error happens on the 4th qubit, so the resulting
state after the syndrome measurement would be

CO

=(000) + [111)) ® (1000) ~ [111)) ® (1000 + [111))

V23

+-L(j000) — |111)) ® (1000 + [111)) & (|000) — |111))

V23
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Error syndrom measurements have to identify on which three-qubit block the phase
flip happened. The relevant set of the phase flip syndromes is obtained by measuring
the following two observables:

X1 XaX3X4XsXe  XaXsXeX7XgXo

which together detect on which three qubit block the error occurred. The result in our
example is

-1 -1

and thus indicates that the phase flip error happened on the second block.

The original state is recovered by applying the phase flip to each qubit of the second
block:

Z4Zs7Z¢



Classical linear codes: encoding

A linear code C encoding k bits of information into a n bit code space is specified by
n X k generating matrix G whose entries are elements of Z, = {0, 1}. A message x
is encoded as

x — y=Gx mod2

A code that uses n bits to encode k bits of information is an [n, k] code. A linear code
[n, k] requires only kn bits of the generating matrix G.

Example:
Three bit repetition code is a [3, 1] code with the generating matrix G:
| 0 |
G=|1 GO)=| 0 |=(000)" Gly=|1 |=a1p?
| 0 |




Classical linear codes: error detection

We introduce the parity check matrix H that is (n — k) X n matrix such that an
[n, k]code is defined by all n element vectors that form the kernel of H

Hy =10

Example: [3, 1] repetition code:
Pick 3 — 1 = 2 linearly independent vectors orthogonal to the columns of G, that is
(110)T and (011)” and define the parity check matrix as

1 1 0
H= ( 01 1 )
The codewords (()()())T and (11 l)T are the only vectors in the kernel of H. Let us

consider the output of a noisy channel to be y' = y + e = (100)”. The parity check
matrix would reveal the error syndrome Hy' = H(y + ¢) = He = (l())T.



Distance measures for codes

The Hamming distance d(x, y) between the codewords x and y is defined to be the
number of places at which x and y differ: e.g. d((1100), (0101)) = 2.

The Hamming weight of a word x: wt(x) = d(0, x). Note: d(x,y) = wt(x + ).
The distance of a code C: d(C) = miny yec xzy d(x,y) = minyec xz0 WiHX)
Setting d = d(C) then the code C can be described as [n, k, d] code.

Important:
if d > 2t + 1 where t € Z, the given code can correct up to ¢ bits.




Introduction to stabilizer codes

Quantum states can easily be specified by the operators that stabilize them. For
example

1
= —(100) + |11
2 ﬁ(l ) +[11))

X1 Xoly) =)

is stabilized by XX, and Z; 2.
Z123l0) :|w>} ) Y X1%; and 212



Pauli group G,

Example: G

G ={%1, %il, =X, +iX, =Y, +iY, + 7, +i/}

where [ is the 2 x 2 unit matrix, and X, Y and Z are the Pauli matrices.

The Pauli group G, on n qubits is the group generated by the operators described
above applied to each of n qubits in the tensor product Hilbert space (C2)2n,

Definition

Suppose S is a subgroup of G, and let Vg be the set of n qubit states which are fixed
by every element of S. Then Vg is a vector space stabilized by S, and S is said to be
the stabilizer of the space V.



Example: Consider n = 3 qubits and S = {I, 212>, 72,73, 7, 7Z3}:
The subspace stabilized by

Z17Z5 is spanned by {|000), |001),|110),|111)}
Z»73 is spanned by {|000), [100), |011),|111)}
Z17Z3 is spanned by {|000), |010), [101),[111)}

The elements |000) and |111) are fixed by all the operators from the set S, so V is
spanned by these states.

We can work with only two operators, for example Z1Z, and Z,Z3, because Z;Z3 =
(Z12»)(Z»Z3) and (2122)2 = I. We now only need to show that the states are stabi-
lized by the generators: S = {Z12>, Z>73}.

Conditions for a subgroup S ¢ G, to be used as the stabilizer for a nontrivial Vi:
(i) the elements of § commute, and
(ii) the operator —1I is not an element of S.



Error correction using stabilizer codes

Suppose that C(S) is a stabilizer code corrupted by an error E € G,:

1. If £ anticommutes with an element of the stabilizer, then E takes C(S) to an
orthogonal subspace and the error can in principle be detected by projective
measurement.

2. If E €S,then E does not corrupt the state at all.

3. The problem emerges if E commutes with all elements of § but £ ¢ S, that is
Eg=gEforallges.



Centralizer Zg :
the set E € G, suchthat Eg =gE forallge S.

Normalizer Ng:
the set E € G,, such that EgET € §..

For any subgroup S C G, not containing —1, N(S) = Z(S).

Theorem

Let S be the stabilizer for a stabilizer code C(S). Suppose {E;} is a set of operators in
G, such that EZ.TEJ- ¢ N(S)— S forall i and j. Then {E;} is a set of correctable errors
for the code C(S).



Three qubit bit flip code
is spanned by |000) and |111) with the stabilizer generated by S = {Z12,, Z>,Z5}.

It can be shown explicitly that every possible product of two elements of the error set
{1, X1, X>, X3} anticommutes with at least one element of the stabilizer, except for 1
which is an element of the stabilizer. Thus by the theorem above, the error set forms
a correctable set for the three qubit bit flip code with the stabilizer S = {Z2,, Z>Z3}.

Error detection is carried out by measuring the stabilizer generators. For example,
if the error X occured, the stabilizer is transformed into {-Z2,, Z>Z3}, SO error syn-
drome measurement gives the results —1 and +1. Similarly the error X, gives the
result —1 and —1, and X3 gives the result +1 and —1.

The original state is recovered by applying the inverse of the error operator indicated
by the error syndrome.



Shor nine qubit code
1
0L) = N [(1000) + [111}) (J000) + [111}) (|000) + [111))]

1
1) = ﬁ[(IOO())—|111>)(|000>—|111>)(I000>—|111>)]

Stabilizer generators:

gi1lz z 11 1 1 1 11
ol ZzZ 1 1 1 1 11
3|1 I 1 Z2Z I 1 I 1
gl 1 I 1 1 Z Z 1 I 1
gs| 1 I I I I I Z Z I
g |1 I I I I I I Z Z
g | X X X X X X I I 1
gs| I I I X X X X X X



Single qubit errors form a correctable set of errors for this code. For example consider
the errors X| and Y4. Their product XY, anticommutes with Z{Z, and thus is not in
N(S). All other products of two errors from the error set of all single qubit errors for
this code anticommutes with at least one element of the stabilizer § and thus are not
in N(S).

This implies that the Short code can be used to correct an arbitrary single qubit
error.

The encoded phase flip Z;, and bit flip X; operations over the Shor code are realized
by the operators

Z1, = X1 X2 X3X4X5X6X7XgX09 and X; = VAVAYLYIVEV LY LV L VY



Steane [7, 1] code

01) = % (|/0000000) + [1010101) + |0110011) + [1100110)
+10001111) +[1011010) + 0111100 + [1101001))

1) = % ((1111111) +|0101010) + [1001100) + [0011001)
+ |1110000) + [0100101) + [1000011) + [0010110))

To construct the stabilizer generators for a CSS(Cq, Cy) code, we first introduce a
parity check matrix, which for CSS codes is formed as

H(Cy)
0

&)
H(Cy) |



The rows of this matrix correspond to stabilizer generators g1, ...

|

H(C;)

0

0

H(Cy)

)

,g;. The left side

of the matrix contains ”1” to indicate which generators contain Xs, and the right side
contains ”1” to indicate which generators contain Zs. In general case, the presence

of ”1” on both sides indicates Ys.

For the Stean code, with C; = C and C, = C*, we get
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Stabilizer generators for the Steane code

gq1|1 I I X X X X
ol X X I 1 X X
e X I X I X I X
el 1l I 1 Z Z Z Z
gs| 1 Z Z I 1 Z Z
| Z I Z 1 Z I Z

It can be shown that all single qubit errors form a correctable set for this code which
implies that the Steane code can be used to correct an arbitrary single qubit error.

The encoded single qubit operations are

2y = 2122374757677 and Xj = X1 X0 X3 X4 X5X6X7.



Fault-tolerant quantum computation

Reliable quantum computation can be achieved even with faulty gates provided the
error probability per gate is below certain threshold.

To perform quantum computation on encoded quantum states, we replace an orig-
inal quantum circuit by an encoded circuit, that is, each qubit by an encoded qubit,
using for example Steane quantum error correcting code, and each operation by an
appropriate encoded operation.

However, this is not sufficient for fault-tolerance.



Problems:

1. encoded gates can cause errors to propagate, and

2. encoded two-qubit operations, such as CNOT, can cause that an error on en-
coded control qubit spreads to the target qubit.




Fault-tolerant quantum operations are those which ensure that a failure anywhere
during the computation can only propagate to a small number of qubits in each block
of encoded data, so the error correction can effectively remove the error.

We define the fault-tolerance of a procedure to be the property that if only one
component in the procedure fails then the failure causes at most one error in
each encoded block of qubits output from the procedure.



Concatenated codes and the threshold theorem
A fault-tolerant CNOT gate:
The probability that this circuit introduces two or more errors in the first encoded

block behaves as O(pz) where p is the probability of failure of individual components
in the circuit.

syndrome | [ recovery |
measurement
syndrome

- recovery -

\ measurement
encoded

qubit



Concatenated error correcting codes

Example: 9 qubit Shore code for correcting an arbitrary single qubit error

— second
—1 level
encoding

first

— level second
encoding 1 level

encoding

— second
—1 level
encoding




Threshold theorem

A quantum circuit containing p(n) gates may be simulated with the probability of error
at most € using

O(poly(logp(n)/€)p(n))

gates on hardware whose components fail with the probability at most p, provided p
is below some constant threshold, p < p;;,, and given reasonable assumptions about
the noise in the underlying hardware.

The typical thresholds are p,;, ~ 107% — 107°.



Physical realization: DiVincenzo criteria
Quantum computing
1. A scalable system with well characterized qubits.

2. The ability to initialize the state of the qubits to a fiducial initial state, such as
100...0).

3. Long coherence times, much longer than the gate operation time.
4. A universal set of quantum gates.
5. A qubit-specific measurement capability.

Additional criteria for quantum communication

6 The ability to interconnect stationary and flying qubits.
7 The ability to faithfully transmit the flying qubits between specified locations.



Physical realization of quantum computation

Quantum computing roadmap (2004) http://qgist.lanl.gov

QC Approach

The DiVincenzo Criteria
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This field is so diverse that it is not feasible to label the criteria with “Promise” symbols.

Legend: = a potentially viable approach has achieved sufficient proof of principle

@ = a potentially viable approach has been proposed, but there has not been sufficient proof of principle

& =no viable approach is known




Noisy Intermediate Scale Quantum computers

NISQ constraints:

- limited number of qubits;

- limited connectivity between qubits;

- restricted (hardware specific) gate alphabets;

- limited circuit depth due to noise.



