
















































Distance measures for codes

The Hamming distance d(x, y) between the codewords x and y is defined to be the
number of places at which x and y differ: e.g. d((1100), (0101)) = 2.

The Hamming weight of a word x: wt(x) = d(0, x). Note: d(x, y) = wt(x + y).

The distance of a code C: d(C) = minx,y2C,x,y d(x, y) = minx2C,x,0 wt(x)

Setting d = d(C) then the code C can be described as [n, k, d] code.

Important:
if d � 2t + 1 where t 2 Z, the given code can correct up to t bits.



Introduction to stabilizer codes

Quantum states can easily be specified by the operators that stabilize them. For
example

| i = 1p
2

(|00i + |11i)

X1X2| i = | i
Z1Z2| i = | i

)
| i is stabilized by X1X2 and Z1Z2.



Pauli group Gn

Example: G1

G1 = {±I,±iI,±X,±iX,±Y,±iY,±Z,±iZ}
where I is the 2 ⇥ 2 unit matrix, and X, Y and Z are the Pauli matrices.

The Pauli group Gn on n qubits is the group generated by the operators described
above applied to each of n qubits in the tensor product Hilbert space (C2)⌦n.

Definition
Suppose S is a subgroup of Gn and let VS be the set of n qubit states which are fixed
by every element of S . Then VS is a vector space stabilized by S , and S is said to be
the stabilizer of the space VS .



Example: Consider n = 3 qubits and S = {I,Z1Z2,Z2Z3,Z1Z3}:
The subspace stabilized by

Z1Z2 is spanned by {|000i, |001i, |110i, |111i}
Z2Z3 is spanned by {|000i, |100i, |011i, |111i}
Z1Z3 is spanned by {|000i, |010i, |101i, |111i}

The elements |000i and |111i are fixed by all the operators from the set S , so Vs is
spanned by these states.

We can work with only two operators, for example Z1Z2 and Z2Z3, because Z1Z3 =
(Z1Z2)(Z2Z3) and (Z1Z2)2 = I. We now only need to show that the states are stabi-
lized by the generators: S = {Z1Z2,Z2Z3}.

Conditions for a subgroup S ⇢ Gn to be used as the stabilizer for a nontrivial Vs:
(i) the elements of S commute, and
(ii) the operator �I is not an element of S .



Error correction using stabilizer codes

Suppose that C(S ) is a stabilizer code corrupted by an error E 2 Gn:

1. If E anticommutes with an element of the stabilizer, then E takes C(S ) to an
orthogonal subspace and the error can in principle be detected by projective
measurement.

2. If E 2 S , then E does not corrupt the state at all.

3. The problem emerges if E commutes with all elements of S but E < S , that is
Eg = gE for all g 2 S .



Centralizer ZS :
the set E 2 Gn such that Eg = gE for all g 2 S .

Normalizer NS :
the set E 2 Gn such that EgE† 2 S .

For any subgroup S ⇢ Gn not containing �I, N(S ) = Z(S ).

Theorem
Let S be the stabilizer for a stabilizer code C(S ). Suppose {Ei} is a set of operators in
Gn such that E†i E j < N(S ) � S for all i and j. Then {Ei} is a set of correctable errors
for the code C(S ).



Three qubit bit flip code
is spanned by |000i and |111i with the stabilizer generated by S = {Z1Z2,Z2Z3}.

It can be shown explicitly that every possible product of two elements of the error set
{I, X1, X2, X3} anticommutes with at least one element of the stabilizer, except for I
which is an element of the stabilizer. Thus by the theorem above, the error set forms
a correctable set for the three qubit bit flip code with the stabilizer S = {Z1Z2,Z2Z3}.

Error detection is carried out by measuring the stabilizer generators. For example,
if the error X1 occured, the stabilizer is transformed into {�Z1Z2,Z2Z3}, so error syn-
drome measurement gives the results �1 and +1. Similarly the error X2 gives the
result �1 and �1, and X3 gives the result +1 and �1.

The original state is recovered by applying the inverse of the error operator indicated
by the error syndrome.



Shor nine qubit code

|0Li =
1p
23

[(|000i + |111i) (|000i + |111i) (|000i + |111i)]

|1Li =
1p
23

[(|000i � |111i) (|000i � |111i) (|000i � |111i)]

Stabilizer generators:

g1 Z Z I I I I I I I
g2 I Z Z I I I I I I
g3 I I I Z Z I I I I
g4 I I I I Z Z I I I
g5 I I I I I I Z Z I
g6 I I I I I I I Z Z
g7 X X X X X X I I I
g8 I I I X X X X X X



Single qubit errors form a correctable set of errors for this code. For example consider
the errors X1 and Y4. Their product X1Y4 anticommutes with Z1Z2 and thus is not in
N(S ). All other products of two errors from the error set of all single qubit errors for
this code anticommutes with at least one element of the stabilizer S and thus are not
in N(S ).

This implies that the Short code can be used to correct an arbitrary single qubit
error.

The encoded phase flip ZL and bit flip XL operations over the Shor code are realized
by the operators

ZL = X1X2X3X4X5X6X7X8X9 and XL = Z1Z2Z3Z4Z5Z6Z7Z8Z9.



Steane [7, 1] code

|0Li =
1p
23

(|0000000i + |1010101i + |0110011i + |1100110i

+ |0001111i + |1011010i + |0111100i + |1101001i)
|1Li =

1p
23

(|1111111i + |0101010i + |1001100i + |0011001i

+ |1110000i + |0100101i + |1000011i + |0010110i)

To construct the stabilizer generators for a CS S (C1,C2) code, we first introduce a
parity check matrix, which for CSS codes is formed as

 
H(C?2 ) 0

0 H(C1)

!
.



 
H(C?2 ) 0

0 H(C1)

!
.

The rows of this matrix correspond to stabilizer generators g1, . . . , gl. The left side
of the matrix contains ”1” to indicate which generators contain Xs, and the right side
contains ”1” to indicate which generators contain Zs. In general case, the presence
of ”1” on both sides indicates Ys.

For the Stean code, with C1 = C and C2 = C?, we get
0
BBBBBBBBBBBBBBBBBBBBBBBB@

0 0 0 1 1 1 1 0 0 0 0 0 0 0
0 1 1 0 0 1 1 0 0 0 0 0 0 0
1 0 1 0 1 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 1 1 1
0 0 0 0 0 0 0 0 1 1 0 0 1 1
0 0 0 0 0 0 0 1 0 1 0 1 0 1

1
CCCCCCCCCCCCCCCCCCCCCCCCA

.



Stabilizer generators for the Steane code

g1 I I I X X X X
g2 I X X I I X X
g3 X I X I X I X
g4 I I I Z Z Z Z
g5 I Z Z I I Z Z
g6 Z I Z I Z I Z

It can be shown that all single qubit errors form a correctable set for this code which
implies that the Steane code can be used to correct an arbitrary single qubit error.

The encoded single qubit operations are

ZL = Z1Z2Z3Z4Z5Z6Z7 and XL = X1X2X3X4X5X6X7.



Fault-tolerant quantum computation

Reliable quantum computation can be achieved even with faulty gates provided the
error probability per gate is below certain threshold.

To perform quantum computation on encoded quantum states, we replace an orig-
inal quantum circuit by an encoded circuit, that is, each qubit by an encoded qubit,
using for example Steane quantum error correcting code, and each operation by an
appropriate encoded operation.

However, this is not sufficient for fault-tolerance.



Problems:

1. encoded gates can cause errors to propagate, and

2. encoded two-qubit operations, such as CNOT , can cause that an error on en-
coded control qubit spreads to the target qubit.

Fault-tolerant quantum computation
Reliable quantum computation can be achieved even with faulty gates provided
the error probability per gate is below certain threshold.

To perform quantum computation directly on encoded quantum states, we replace 
an original quantum circuit by encoded circuit, i.e. each qubit by encoded qubit using 
e.g. the Steane code, and each operation by the appropriate encoded operation. 
This is not enough for fault-tolerance.

Problems:
1) Encoded gates can cause errors to propagate;
2) The encoded CNOT can cause an error on 

encoded control qubit to spread
to an encoded target qubit.

Fault-tolerant encoded operations are those which ensure that a failure anywhere
during the computation can only propagate to a small number of qubits in each block
Of the encoded data, so that error correction can effectively remove it.

We define the fault-tolerance  of a procedure to be the property that if only one 
component in the procedure fails then the failure causes at most one error in
each encoded block of qubits output from the procedure.



Fault-tolerant quantum operations are those which ensure that a failure anywhere
during the computation can only propagate to a small number of qubits in each block
of encoded data, so the error correction can effectively remove the error.

We define the fault-tolerance of a procedure to be the property that if only one
component in the procedure fails then the failure causes at most one error in
each encoded block of qubits output from the procedure.



Concatenated codes and the threshold theorem

A fault-tolerant CNOT gate:

The probability that this circuit introduces two or more errors in the first encoded
block behaves as O(p2) where p is the probability of failure of individual components
in the circuit.Concatenated codes and threshold

A fault tolerant CNOT gate syndrome
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block with probability O(p2).
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Concatenated codes and the threshold theorem

A quantum circuit containing p(n) gates may be 
simulated with probability of error at most � using

O(poly(log p(n)/�)p(n))
gates on hardware whose components fail with
probability at most p, provided p is below some 
constant threshold, p<pth, and given reasonable 
assumptions about the noise in the underlying 
hardware.
The typical thresholds are pth ~ 10-4 – 10-5

i.e. allowable noise (error) is about 0.01% - too small!!!

Are there any other routes to fault-tolerant quantum computing?



Concatenated error correcting codes

Example: 9 qubit Shore code for correcting an arbitrary single qubit error

Concatenated codes and threshold
A fault tolerant CNOT gate syndrome
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Concatenated codes and the threshold theorem

A quantum circuit containing p(n) gates may be 
simulated with probability of error at most � using

O(poly(log p(n)/�)p(n))
gates on hardware whose components fail with
probability at most p, provided p is below some 
constant threshold, p<pth, and given reasonable 
assumptions about the noise in the underlying 
hardware.
The typical thresholds are pth ~ 10-4 – 10-5

i.e. allowable noise (error) is about 0.01% - too small!!!

Are there any other routes to fault-tolerant quantum computing?



Threshold theorem

A quantum circuit containing p(n) gates may be simulated with the probability of error
at most ✏ using

O(poly(logp(n)/✏)p(n))

gates on hardware whose components fail with the probability at most p, provided p
is below some constant threshold, p < pth, and given reasonable assumptions about
the noise in the underlying hardware.

The typical thresholds are pth ⇡ 10�4 � 10�5.



Physical realization: DiVincenzo criteria
Quantum computing

1. A scalable system with well characterized qubits.

2. The ability to initialize the state of the qubits to a fiducial initial state, such as
|00 . . . 0i.

3. Long coherence times, much longer than the gate operation time.

4. A universal set of quantum gates.

5. A qubit-specific measurement capability.

Additional criteria for quantum communication

6 The ability to interconnect stationary and flying qubits.

7 The ability to faithfully transmit the flying qubits between specified locations.



Physical realization of quantum computation

Quantum computing roadmap (2004) http://qist.lanl.govPhysical realizations of quantum computationPhysical realizations of quantum computation

Quantum Computation
Roadmap

http://qist.lanl.gov/



Noisy Intermediate Scale Quantum computers

NISQ constraints:

- limited number of qubits;

- limited connectivity between qubits;

- restricted (hardware specific) gate alphabets;

- limited circuit depth due to noise.


