CLASSICAL AND QUANTUM COMPUTATION

COMPUTATIONAL COMPLEXITY CLASSES

Deterministic computation and deterministic Turing machine

Turing machine consists of

1. a finite alphabet Σ containing the blank symbol $*$;
2. a 2-way infinite tape divided into cells, one of which is a special starting cell. Each cell contains a symbol from the alphabet Σ. All but a finite number of cells contain the special blank symbol $*$, denoting an empty cell;
3. read-write head that examines a single cell at a time and can move left (\leftarrow) or right (\rightarrow);
4. a control unit along with a finite set of states Γ including a distinguished starting state, γ_{0}, and a set of halting states.

The computation of a Turing machine is controlled by a transition function:

$$
\delta: \quad \Gamma \times \Sigma \quad \rightarrow \quad \Gamma \times \Sigma \times\{\leftarrow, \rightarrow\}
$$

Example: Unary addition Turing machine
States: $\Gamma=\left\{\gamma_{0}, \gamma_{1}, \gamma_{2}, \gamma_{3}\right\}$ with the starting state γ_{0} and the halting state γ_{3};

Alphabet: $\Sigma=\{*, 1,+,=\}=\Sigma_{0} \cup\{*\}$ where Σ_{0} is called external alphabet;
Input: integers $a, b \geq 0$ with the symbol + and $=$
(e.g. $2+1$ is written as ' $11+1=$ ' on the tape with the leftmost input symbol in the starting square);

Output: $a+b$ unary

Transition function:

$$
\begin{array}{ll}
\left(\gamma_{0}, 1, \gamma_{1}, *, \rightarrow\right) & a \neq 0, \text { reading } a \\
\left(\gamma_{0},+, \gamma_{2}, *, \rightarrow\right) & a=0, \text { erase }+ \text {, read } b \\
\left(\gamma_{1}, 1, \gamma_{1}, 1, \rightarrow\right) & \text { reading } a \\
\left(\gamma_{1},+, \gamma_{2}, 1, \rightarrow\right) & \text { replace + by } 1, \text { read } b \\
\left(\gamma_{2},=, \gamma_{3}, *, \leftarrow\right) & \text { finish reading } b, \text { erase }=\text {, halt }
\end{array}
$$

READ
$\gamma_{0}, 1$

$\gamma_{1},+$

$\gamma_{2},=$

$\gamma_{2}, 1, \rightarrow$

$*$	$*$	$*$	1	1	1	$=$	$*$

$\gamma_{2}, 1, \rightarrow$

$*$	$*$	$*$	1	1	1	$=$	$*$

result

Church-Turing thesis

Any algorithm can be realized by a Turing machine.

A Turing machine is a finite object, so it can be encoded by a string. Then for any fixed alphabet Σ_{0}^{*}, we can consider a universal Turing machine U which computes the function

$$
u([M], x)=\phi_{M}(x)
$$

where [M] is the encoding of a Turing machine M.

Computable functions and decidable predicates

Every Turing machine M computes a function

$$
\phi_{M}: \Sigma_{0}^{*} \rightarrow \Sigma_{0}^{*}
$$

where Σ_{0}^{*} is the set of all strings over Σ_{0} (external alphabet). $\phi_{M}(x)$ is the output string for input x. The value of $\phi_{M}(x)$ is undefined if the computation never terminates.

A function $f: \Sigma_{0}^{*} \rightarrow \Sigma_{0}^{*}$ is computable if there exists a Turing machine M such that $\phi_{M}=f$. In this case we say f is computed by M.

A predicate is a function $L: \Sigma_{0}^{*} \rightarrow\{0,1\}$, a function with a Boolean value. A predicate is called decidable if this function is computable.

Decision problems

An input $x \in \Sigma_{0}^{*}$ is accepted by an (acceptor) deterministic TM, if the machine terminates in the state γ_{T} on input x and is rejected if it halts in state γ_{F}.

Any set of string $L \subseteq \Sigma_{0}^{*}$ is called a language. If M is an acceptor deterministic TM, then we define the language accepted by M to be

$$
L(M)=\left\{x \in \Sigma_{0}^{*} \mid M \text { accepts } x\right\}
$$

If M halts on all inputs $x \in \Sigma_{0}^{*}$ then we say that M decides L.

For a general decision problem Π we have the associated language

$$
L_{\Pi}=\left\{x \in \Sigma_{0}^{*} \mid x \text { is a natural encoding of a true instance of } \Pi\right\} .
$$

Example

PRIME

Input: an integer $n \geq 2$.
Question: is n prime?
$L_{\text {PRIME }}=\{x \mid x$ is the binary encoding of a prime number. $\}$

Complexity

A TM works in time $T(n)$ if it performs at most $T(n)$ steps for any input of size n.
A function/predicate F on \mathbb{B}^{*}, that is on binary strings, is computable/decidable in polynomial time if there exists a TM that computes it in time $T(n)=\operatorname{poly}(n)$, where n is the input length.

A class of all functions (predicates) computable (decidable) in polynomial time is called P.

We say that these functions are efficiently solvable or tractable on deterministic Turing machine.
$\mathrm{P}=\left\{L \subseteq \Sigma_{0}^{*} \mid\right.$ there is a deterministic TM M which decides L and a polynomial $p(n)$ such that $T(n) \leq p(n)$ for all $n \geq 1\}$

A TM works in space $s(n)$ if it visits at most $s(n)$ cells for any computation on inputs of size n.

A function (predicate) F on \mathbb{B}^{*} is computable (decidable) in polynomial space if there exists a TM that computes F and runs in space $s(n)=\operatorname{poly}(n)$ where n is the input length.

A class of all functions (predicates) computable (decidable) in polynomial space is called PSPACE.

P \subseteq PSPACE

It is generally believed that this inclusion is strict though this is an open question.

Non-deterministic computation

A non-deterministic Turing machine is a hypothetical machine that resembles a deterministic Turing machine but can non-deterministically choose one of several actions possible in a given configuration. Its transition function is multivalued.

A predicate L belongs to the class NP, Non-deterministic Polynomial, if there exist a non-deterministic Turing machine M and a polynomial $p(n)$ such that
$L(x)=1 \quad \Rightarrow \quad$ there exists a computational path that gives the answer 'yes' in time $p(|x|)$, where $|x|$ is the size of the input;
$L(x)=0 \quad \Rightarrow \quad$ there is no path with this property.

Alternative definition of the complexity class NP (Kitaev)

Imagine two persons: King Arthur (with polynomially bounded mental capabilities) and a wizard Merlin (intellectually omnipotent). Arthur is interested in $L(x)$. Merlin wants to convince Arthur that $L(x)$ is true, but Arthur does not trust Merlin (he is too smart to be loyal) and wants to make sure that $L(x)$ is true.

So Arthur arranges that, after both he and Merlin see input string x, Merlin writes a note to Arthur where he proves that $L(x)$ is true. Then Arthur verifies this proof by some polynomial proof-checking predicate (procedure)

$$
R(x, y)=" y \text { is a proof of } L(x) "
$$

where $L(x)=1$ implies that Merlin can convince Arthur that $L(x)$ is true by presenting some proof y such that $R(x, y)$; and $L(x)=0$ implies that whatever Merlin says, Arthur is not convinced: $R(x, y)$ is false for any y.

NP, NP hardness and NP completeness

A predicate L_{1} is reducible to a predicate L_{2} if there exists a function $f \in \mathrm{P}$ such that $L_{1}(x)=L_{2}(x)$ for any input string x. We say $L_{1} \propto L_{2}$.

Lemma: Let $L_{1} \propto L_{2}$, then
(a) $L_{2} \in \mathrm{P} \quad \Rightarrow \quad L_{1} \in \mathrm{P}$
(a) $L_{2} \notin \mathrm{P} \quad \Rightarrow \quad L_{1} \notin \mathrm{P}$
(a) $L_{2} \in N P \quad \Rightarrow \quad L_{1} \in N P$

Predicate L is NP-hard if any predicate in NP is reducible to it.
Predicate L is NP-complete if it is NP-hard and $L \in \mathrm{NP}$.

Example: SAT (satisfiability)

$\operatorname{SAT}(x)$ means that x is a propositional formula, containing Boolean variables and operations (negation, disjunction, conjunction) that is satisfiable, that is "true" for some values of the variables.

Cook-Levin Theorem:

$$
\begin{aligned}
& \text { SAT } \in \text { NP } \\
& \text { SAT } \in \text { NP-complete }
\end{aligned}
$$

Other examples: 3-COLORING, CLIQUE, ...

$\mathbf{P} \subseteq \mathbf{N P} \subseteq \mathbf{P S P A C E}$

Again it is believed that the inclusions are strict though this is an open question.

If you could prove that $S A T \in P$, then you would resolve the problem P vs. NP which is one of the Millenium problems of the Clay Mathematics Institute with a prize of $\$ 1,000,000$.

Probabilistic computation

A probabilistic Turing machine can probabilistically choose one of several actions possible in a given configuration. This is similar to a non-deterministic TM but the choice is made by coin tossing rather than guessing. PTM is in principle physical.

Let ϵ be a constant such that $0<\epsilon<\frac{1}{2}$. A predicate L belongs to the class BPP, Bounded-error Probabilistic Polynomial, if there exists a probabilistic Turing machine M and a polynomial $p(n)$ such that the machine M running on input string x always terminates at most $p(|x|)$ steps, and
$L(x)=1 \quad \Rightarrow \quad M$ gives the answer 'yes' with probability $\geq 1-\epsilon ;$
$L(x)=0 \quad \Rightarrow \quad M$ gives the answer 'no' with probability $\leq \epsilon$.
Example: PRIMALITY, i.e. checking whether a given integer is a prime number.

$\mathbf{P} \subseteq \mathbf{B P P} \subseteq \mathbf{P S P A C E}$

Quantum computation

A quantum Turing machine can choose a superposition of several actions in a given configuration. This is somewhat similar to a probabilistic TM.

Let ϵ be a constant such that $0<\epsilon<\frac{1}{2}$. A predicate L belongs to the class BQP, Bounded-error Quantum Polynomial, if there exists a quantum Turing machine M and a polynomial $p(n)$ such that the machine M running on input string x always terminates at most $p(|x|)$ steps, and
$L(x)=1 \quad \Rightarrow \quad M$ gives the answer 'yes' with probability $\geq 1-\epsilon ;$
$L(x)=0 \quad \Rightarrow \quad M$ gives the answer 'no' with probability $\leq \epsilon$.

Alternatively using quantum circuit:

A quantum algorithm for the computation of a function $F: \mathbb{B}^{*} \rightarrow \mathbb{B}^{*}$ is a classical algorithm, that is, a deterministic Turing machine, that computes a function of the form $x \mapsto Z(x)$ where $Z(x)$ is a description of a quantum circuit which computes $F(x)$ on empty input.

The function F is said to belong to the class BQP if there is a quantum algorithm that computes F in time poly (n).

$$
\mathbf{P} \subseteq \mathbf{B P P} \subseteq \mathbf{B Q P} \subseteq \mathbf{P S P A C E}
$$

CLASSICAL AND QUANTUM COMPUTATION

QUANTUM ALGORITHMS

Deutsch-Jozsa algorithm

It computes whether a Boolean function F over n variables is constant or balanced.
A Boolean function F over n variables is said to be

- constant if it gives the same output to all possible inputs;
- balanced if it outputs 0 for half of all possible inputs and 1 to the other half.

Examples:

$\mathrm{x}_{1} \mathrm{x}_{2}$	Constant:	Balanced:				
	$\mathrm{F}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)$	$\mathrm{F}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)$				
00	10	10	1	0	0	1
01	10	10	0	1	1	0
10	10	$0 \quad 1$	1	0	1	0
11	10	$0 \quad 1$	0	1	0	1

Classical complexity is exponential: in the worst case, the function needs to be applied $2^{n-1}+1$ times to check its output for more than a half of all inputs.

Deutsch-Jozsa algorithm for a two-qubit function

The initial state:

$$
\left|\phi_{1}\right\rangle=|0\rangle \otimes|0\rangle \otimes|1\rangle=|001\rangle
$$

Deutsch-Jozsa algorithm for a two-qubit function: Hadamard gates

$$
\begin{aligned}
\left|\phi_{2}\right\rangle & =(\hat{H} \otimes \hat{H} \otimes \hat{H})(|0\rangle \otimes|0\rangle \otimes|1\rangle)=\hat{H}|0\rangle \otimes \hat{H}|0\rangle \otimes \hat{H}|1\rangle \\
& =\left[\frac{1}{\sqrt{2}}(|0\rangle+|1\rangle)\right] \otimes\left[\frac{1}{\sqrt{2}}(|0\rangle+|1\rangle)\right] \otimes\left[\frac{1}{\sqrt{2}}(|0\rangle-|1\rangle)\right] \\
& =\frac{1}{2}(|00\rangle+|01\rangle+|10\rangle+|11\rangle) \otimes\left[\frac{1}{\sqrt{2}}(|0\rangle-|1\rangle)\right]
\end{aligned}
$$

x_{1}	x_{2}	$F\left(x_{1}, x_{2}\right)$
0	0	0
0	1	1
1	0	0
1	1	1

Deutsch-Jozsa algorithm for a two-qubit function: \hat{U}_{F}

$$
\begin{aligned}
\left|\phi_{3}\right\rangle= & \hat{U}_{F}\left|\phi_{2}\right\rangle=\frac{1}{2}(|00\rangle+|01\rangle+|10\rangle+|11\rangle) \otimes\left[\frac{1}{\sqrt{2}}(|0\rangle-|1\rangle)\right] \\
= & \hat{U}_{F}\left\{\frac{1}{2}|00\rangle \otimes\left[\frac{1}{\sqrt{2}}(|0\rangle-|1\rangle)\right]\right\}+\hat{U}_{F}\left\{\frac{1}{2}|01\rangle \otimes\left[\frac{1}{\sqrt{2}}(|0\rangle-|1\rangle)\right]\right\} \\
& +\hat{U}_{F}\left\{\frac{1}{2}|10\rangle \otimes\left[\frac{1}{\sqrt{2}}(|0\rangle-|1\rangle)\right]\right\}+\hat{U}_{F}\left\{\frac{1}{2}|11\rangle \otimes\left[\frac{1}{\sqrt{2}}(|0\rangle-|1\rangle)\right]\right\} \\
= & \frac{1}{2}\left(|00\rangle \otimes\left[\frac{1}{\sqrt{2}}(|0\rangle-|1\rangle)\right]+|01\rangle \otimes\left[\frac{1}{\sqrt{2}}(|1\rangle-|0\rangle)\right]\right. \\
& \left.+|10\rangle \otimes\left[\frac{1}{\sqrt{2}}(|0\rangle-|1\rangle)\right]+|11\rangle \otimes\left[\frac{1}{\sqrt{2}}(|1\rangle-|0\rangle)\right]\right) \\
= & \frac{1}{2}(|00\rangle-|01\rangle+|10\rangle-|11\rangle) \otimes\left[\frac{1}{\sqrt{2}}(|0\rangle-|1\rangle)\right]
\end{aligned}
$$

Deutsch-Jozsa algorithm for a two-qubit function: readout
Now, we can disregard the auxiliary qubit and focus on the first factor of $\left|\phi_{3}\right\rangle$ above. We first rewrite it as

$$
\frac{1}{2}(|00\rangle-|01\rangle+|10\rangle-|11\rangle)=\left[\frac{1}{\sqrt{2}}(|0\rangle+|1\rangle)\right] \otimes\left[\frac{1}{\sqrt{2}}(|0\rangle-|1\rangle)\right]
$$

and then perform the Hadamard rotations

$$
\begin{aligned}
\left|\phi_{4}\right\rangle & =\hat{H}\left[\frac{1}{\sqrt{2}}(|0\rangle+|1\rangle)\right] \otimes \hat{H}\left[\frac{1}{\sqrt{2}}(|0\rangle-|1\rangle)\right] \\
& =|0\rangle \otimes|1\rangle=|01\rangle
\end{aligned}
$$

The measurement of each qubit reveals that the function is balanced.
The function is constant if the measurement of each input qubit at the end of the computation yields 0 . Otherwise the function is balanced.

Deutsch-Jozsa algorithm

Inputs:
A black box \hat{U}_{F} which performs the transformation $|\mathbf{x}\rangle|\mathbf{y}\rangle \rightarrow|\mathbf{x}\rangle|\mathbf{y} \oplus F(\mathbf{x})\rangle$ for $\mathbf{x} \in$ $\left\{0,1, \ldots, 2^{n-1}\right\}$ and $F(\mathbf{x}) \in\{0,1\}$. It is promised that the function $F(\mathbf{x})$ is either constant or balanced.

Outputs:
0 iff F is constant.

Complexity/Runtime:
One evaluation of \hat{U}_{F}. Always succeeds.

Exponential speed-up compared to classical algorithm

