
MP472 QUANTUM INFORMATION PROCESSING

Introduction to classical and quantum information
Bell inequalities and entanglement
Quantum communication and cryptography, quantum teleportation
Physical and conceptual models of computation and computational complexity classes
Quantum algorithms
Theory of open quantum systems
Quantum error correction
Fault-tolerant quantum computation
Topological quantum computation
Physical implementations



LECTURE NOTES AND REFERENCES

Lecture notes - online access:
http://www.thphys.nuim.ie/Notes/MP472/

Michael Nielsen, Isaac Chuang
Quantum Computation and Quantum Information

Cambridge University Press, 2000

John Preskill
Lecture Notes - Physics 219, Caltech
http://www.theory.caltech.edu/ preskill/ph219/index.html



REQUIREMENTS

The total mark consists of:

Examination: constitutes 80% of the total mark
duration: 120 minutes,
maximum mark: 100 points.

Continuous Assessment: 20% of the total mark
homework assignments, quizzes.



MP472 QUANTUM INFORMATION PROCESSING

Classical information
- classical bit
- Boolean function
- Boolean circuit

Quantum information
- quantum bit(s)
- quantum operations
- quantum state measurement
- quantum circuit
- example: quantum entangler

Example of quantum information processing:
Teleportation



Classical information and its processing

An elementary unit of classical information is bit

B = {0, 1}

Information is physical (Rolf Landauer, IBM):

The values 0 and 1 of the bit correspond to two distinct values (states) of some
physical quantity, for example electric voltage.



A Boolean function on n variables

F(x1, x2, ..., xn) : Bn → Bk

Examples: simple Boolean functions



A Boolean circuit is a representation of a Boolean function as a composition of other
Boolean functions from a set B, for example:

B {∧,⊕}
A circuit overB is a sequence of assignments involving n input variables {x1, x2, ..., xn}
and several auxiliary variables

�
y1, y2, ..., yk

�
where yk = fk(u1, ..., ur) and each of the

variables u1, ..., ur are either input variables or auxiliary variables preceeding yk.

Example: Addition of two 2-digit numbers (Kitaev et al.)

A basis B is called complete , if for any Boolean function f , there is a circuit over B
that computes f . For example B {∧,⊕}.



Quantum information

Quantum bit or qubit is a two dimensional Hilbert space H2 � C2
.

Qubit values are vectors, states, from this Hilbert space:

|φ� = c0|0� + c1|1�

where |0� and |1� are an orthonormal set called the standard computational basis
and c0, c1 ∈ C and |c0|

2 + |c1|
2 = 1.



Physical realization of a qubit can for example be a spin-1/2 particle:

|0� = | ↑� |1� = | ↓� |φ� = c↑| ↑� + c↓| ↓�
or two energy levels of an atom or ion,

or opposite superconducting fluxes in a superconducting flux qubit,

or ...

Quantum logic operations are rotations of a quantum state vector in a Hilbert

space:

they are unitary, and thus reversible, operations.

(Classical computation can be made reversible.)



Qubits

A quantum state of n qubits is a vector in 2n
-dimensional Hilbert space:

n�

k=1
H

2 = H2 ⊗H2 ⊗ ...H2
(n-times) = H2n

Examples: Composite product states

|φ� = |0� ⊗ |0� = |0�|0� = |00�
or

|ψ� = �c0|0� + c1|1�
� ⊗ |0� = c00|00� + c10|10�

where in the latter we identified c00 = c0 and c10 = c1.



Examples: Entangled states: the Bell states

|β00� =
1√
2

(|00� + |11�)

|β01� =
1√
2

(|01� + |10�)

|β10� =
1√
2

(|00� − |11�)

|β11� =
1√
2

(|01� − |10�)



No-cloning theorem: Quantum information can not be cloned (copied):

Assume there is a cloning operator Ĉ such that

Ĉ|0� = |0� ⊗ |0� = |00� and Ĉ|1� = |1� ⊗ |1� = |11�

then applying it onto a superposition |ψ� = c0|0� + c1|1� proofs the theorem

Ĉ|ψ� � |ψ� ⊗ |ψ�

Ĉ
�
c0|0� + c1|1�

�
= c0Ĉ|0� + c1Ĉ|1�
= c0|00� + c1|11�
�
�
c0|0� + c1|1�

� ⊗ �c0|0� + c1|1�
�

= c2
0|00� + c0c1|01� + c0c1|10� + c2

1|11�



Quantum computing operations

Single qubit gates

Phase flip Ẑ

Ẑ|0� = |0�
Ẑ|1� = −|1�

Ẑ
�
c0|0� + c1|1�

�
= c0 Ẑ |0� + c1 Ẑ |1� = c0|0� − c1|1�

This operation or gate has no analog in classical world.

Homework:

Show that the states |ψ� = 1√
2

(|0� + |1�) and |Ẑψ� = Ẑ|ψ� are orthogonal.



Bit flip X̂

X̂|0� = |1�
X̂|1� = |0�

X̂
�
c0|0� + c1|1�

�
= c0 X̂ |0� + c1 X̂ |1� = c1|0� + c0|1�



Hadamard gate Ĥ

Ĥ|0� = 1√
2

(|0� + |1�)

Ĥ|1� = 1√
2

(|0� − |1�)

Ĥ
�
c0|0� + c1|1�

�
= c0 Ĥ |0� + c1 Ĥ |1�
=

c0√
2

(|0� + |1�) + c1√
2

(|0� − |1�)

=
c0 + c1√

2
|0� + c0 − c1√

2
|1�

Homework:

Show what operations correspond to the following products ĤĤ, ĤẐĤ, ĤX̂Ĥ.



Two-qubit gates

Two-qubit states have the standard computational basis B = {|00�, |01�, |10�, |11�}.

Controlled-NOT

CNOT12 (the first qubit is the control qubit, the second is the target qubit):

CNOT12|00� = |00�
CNOT12|01� = |01�
CNOT12|10� = |11�
CNOT12|11� = |10�

CNOT12
�
c00|00� + c01|01� + c10|10� + c11|11�� = c00|00� + c01|01� + c11|10� + c10|11�



CNOT21:

CNOT21|00� = |00�
CNOT21|01� = |11�
CNOT21|10� = |10�
CNOT21|11� = |01�

CNOT21
�
c00|00� + c01|01� + c10|10� + c11|11�� = c00|00� + c11|01� + c10|10� + c01|11�



Application: the Bell state generator

|φ1� = |0� ⊗ |0� = |00�
|φ2� =

�
Ĥ ⊗ 1̂

�
|φ1� = Ĥ|0� ⊗ 1̂|0� = 1√

2
(|0� + |1�) ⊗ |0� = 1√

2
(|00� + |10�)

|β00� = CNOT |φ2� =
1√
2

(|00� + |11�)

(Here CNOT stays for CNOT12.)

Homework: Design circuits to generate the other Bell states

|β01� =
1√
2

(|01� + |10�) |β10� =
1√
2

(|00� − |11�) |β11� =
1√
2

(|01� − |10�)



Single qubit measurement

Measurement of one qubit |φ� = c0|0� + c1|1� in the standard computational basis
gives classical bit of information:

• with the probability
���c0
���2 the measurement gives the result M = 0 and the quan-

tum state immediately after the measurement has collapsed to |ψ� = |0�;

• with the probability |c1|2 the measurement gives the result M = 1 and the quan-
tum state immediately after the measurement has collapsed to |ψ� = |1�.



Measurement of an entangled state - Einstein-Podolsky-Rosen paradox

Measurement of the first qubit of a two-qubit entangled state |φ� = c00|00� + c11|11�
yields the following outcome:

• with the probability
���c00
���2 the measurement gives the result M1 = 0 and the

quantum state immediately after the measurement has collapsed to |ψ� = |00�;

• with the probability |c11|2 the measurement gives the result M1 = 1 and the
quantum state immediately after the measurement has collapsed to |ψ� = |11�.

The measurement of one qubit of an entangled two-qubit state completely de-
termines the state of the other qubit after the measurement even if both qubits
are spatially separated and can not communicate or interact.



Teleportation 



Teleportation

Teleport an unknown qubit state |ψ� using the Bell state |β00� and single-qubit and
two-qubit operations, two measurements and communication of two classical bits.



|ψ� = c0|0� + c1|1� |β00� =
1√
2

(|00� + |11�)

|φ1� = |ψ� ⊗ |β00� = |ψ�|β00� =
1√
2
�
c0|000� + c0|011� + c1|100� + c1|111��

|φ2� =
1√
2
�
c0|000� + c0|011� + c1|110� + c1|101��



|φ2� =
1√
2
�
c0|000� + c0|011� + c1|110� + c1|101��

|φ3� =
1
2
�
c0|000� + c0|100� + c0|011� + c0|111� + c1|010� − c1|110� + c1|001� − c1|101��



|φ3� =
1
2
�
c0|000� + c0|100� + c0|011� + c0|111� + c1|010� − c1|110� + c1|001� − c1|101��

Four possible results of the measurements on the first and second qubit are

(i) M1 = 0, M2 = 0 (ii) M1 = 0, M2 = 1
(iii) M1 = 1, M2 = 0 (iv) M1 = 1, M2 = 1



|φ3� =
1
2
�
c0|000� + c0|100� + c0|011� + c0|111� + c1|010� − c1|110� + c1|001� − c1|101��

Measurement results: M1 = 0, M2 = 0

|φ4� = c0|000� + c1|001� = |00� ⊗ �c0|0� + c1|1�
�
= |00� ⊗ |ψ��

|ψ� = Ẑ0 X̂0 |ψ�� = |ψ�� = c0|0� + c1|1�
The final state of the third qubit is now the same as the initial state of the first qubit.



|φ3� =
1
2
�
c0|000� + c0|100� + c0|011� + c0|111� + c1|010� − c1|110� + c1|001� − c1|101��

Measurement results: M1 = 1, M2 = 0

|φ4� = c0|100� − c1|101� = |10� ⊗ �c0|0� − c1|1�
�
= |10� ⊗ |ψ��

|ψ� = Ẑ1 X̂0 |ψ�� = Ẑ
�
c0|0� − c1|1�

�
= c0|0� + c1|1�

The final state of the third qubit is now the same as the initial state of the first qubit.



|φ3� =
1
2
�
c0|000� + c0|100� + c0|011� + c0|111� + c1|010� − c1|110� + c1|001� − c1|101��

Measurement results: M1 = 0, M2 = 1

|φ4� = c0|011� + c1|010� = |01� ⊗ �c1|0� + c0|1�
�
= |01� ⊗ |ψ��

|ψ� = Ẑ0 X̂1 |ψ�� = X̂
�
c1|0� + c0|1�

�
= c0|0� + c1|1�

The final state of the third qubit is now the same as the initial state of the first qubit.



|φ3� =
1
2
�
c0|000� + c0|100� + c0|011� + c0|111� + c1|010� − c1|110� + c1|001� − c1|101��

Measurement results: M1 = 1, M2 = 1

|φ4� = c0|111� − c1|110� = |11� ⊗ �−c1|0� + c0|1�
�
= |11� ⊗ |ψ��

|ψ� = Ẑ1 X̂1 |ψ�� = ẐX̂
�−c1|0� + c0|1�

�
= Ẑ
�
c0|0� − c1|1�

�
= c0|0� + c1|1�

The final state of the third qubit is now the same as the initial state of the first qubit.



You	
  be'er	
  learn	
  	
  
how	
  teleporta0on	
  works!!!	
  

…before	
  

a6er	
  …	
  


