
MP465 – Advanced Electromagnetism

Tutorial 9 (21 April 2020)

Green’s Function for the d’Alembertian
When we considered purely time-independent system, we saw that Maxwell’s

equations implied the following equations that the potentials had to satisfy:

∇2Φ = −ρ(~r)

ε0
, ∇2 ~A = −µ0

~J(~r).

These are linear inhomogeneous partial differential equations (PDEs), and
we can solve them using a straightforward extension of what we learned in
our ordinary differential equations module: if we have a linear operator L~r

and a function g(~r) and wish to find a function y(~r) which solves the PDE
L~r y = g in a region V , we can do so by finding a Green’s function G(~r;~r ′)
which satisfies Green’s equation, i.e.

L~rG(~r;~r ′) = δ(3)(~r − ~r ′).

Once we have this Green’s function, then the general solution to L~r y = g is

y(~r) = y0(~r) +

∫
V
G(~r;~r ′)g(~r ′) d3~r ′.

where y0 is a solution to the homogenous PDE L~r y = 0.
For the static cases we started with, the Laplacian ∇2 is the operator

appearing, and we showed that a Green’s function for this is the famous

G(~r;~r ′) = − 1

4π

1

|~r − ~r ′|

and it’s this that gives us all the familiar expressions for Φ and ~A (and, by

extension, ~E and ~B).

But before we extend this to the time-dependent case, let’s do a quick
proof. Suppose L~r is a translation-invariant operator. What this means is
that if ~a is a constant vector, and we replace ~r by ~r + ~a everywhere in L~r,
then the operator is translation-invariant if it does not change form, namely,
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L~r+~a = L~r. A concrete example of such an operator in an ODE context
would be Lx = d/dx; if x is replaced by x+ a, then

Lx+a =
d

d(x+ a)

=
dx

d(x+ a)

d

dx

=
d[(x+ a)− a]

d(x+ a)

d

dx

=
d

dx
= Lx.

(As a counterexample, note that the operator Lx = x(d/dx) is not translation-
invariant, because Lx+a = Lx + a(d/dx) 6= Lx.)

The Green’s functions of translation-invariant operators have a special
property which we’ll now determine. The defining relation for G is Green’s
equation

L~rG(~r;~r ′) = δ(3)(~r − ~r ′),

so let’s shift the two position vectors by ~a and see what we get:

L~r+~aG(~r + ~a;~r ′ + ~a) = δ(3) ((~r + ~a)− (~r ′ + ~a))

= δ(3)(~r − ~r ′).

If the operator is translation-invariant, then this becomes

L~rG(~r + ~a;~r ′ + ~a) = δ(3)(~r − ~r ′)

and so G(~r + ~a;~r ′ + ~a) satisfies the same equation as G(~r;~r ′) and so they
can be taken to be the same. But now suppose we pick ~a = −~r ′; this is legit
because from the point of view of the operator, the primed position vector is
treated as a constant. With this choice, we get the result

G(~r + ~a;~r ′ + ~a) = G(~r − ~r ′;~0).

In other words, the Green’s function for any translation-invariant operator
depends not on ~r and ~r ′ separately, but only on the difference ~r − ~r ′. And
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we’ve seen this already: the Laplacian can easily be shown to be translation-
invariant, and we see its Green’s function depends only on ~r − ~r ′.

So the upshot is that for translation-invariant operators, the Green’s func-
tion may be found by looking for a function G̃(~r) satisfying

L~r G̃(~r) = δ(3)(~r)

and then getting the full Green’s function from G(~r;~r ′) = G̃(~r − ~r ′).

Okay, back to physics. In the next lecture, we’ll see that if we don’t
make an assumption of time-independence, then (with a specific choice of
gauge which I’ll elaborate on in the lecture) Maxwell’s equations for the

time-dependent potentials Φ(t, ~r) and ~A(t, ~r) are

�Φ = −ρ(t, ~r)

ε0
, � ~A = −µ0

~J(t, ~r)

and we see it’s not the Laplacian that appears, but rather the d’Alembertian
or wave operator

� = ∇2 − 1

c2
∂2

∂t2

=
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
− 1

c2
∂2

∂t2
,

where c is the speed of light (or, for a linear medium, the speed of light in
the medium). Despite this change, we want to try to solve them in the same
way as we did in the satic case, namely, find the Green’s function and express
the particular solutions as integrals over the sources.

So what we need is a Green’s function for the d’Alembertian, namely, a
function G(t, ~r; t′, ~r ′) satisfying

�x G(x;x′) = δ(4)(x− x′)

where x represents the full four-dimensional spacetime vector x = (t, ~r). To
be somewhat more concrete, if we separate out the time and space depen-
dence, the above is equivalent to

�t,~r G(t, ~r; t′, ~r ′) = δ(t− t′)δ(3)(~r − ~r ′)
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If we can find such a function, then we see that the scalar potential will be

Φ(t, ~r) = Φ0(t, ~r)−
1

ε0

∫
G(t, ~r; t′, ~r ′)ρ(t′, ~r ′) dt′ d~r ′

with �Φ0 = 0, and a similar expression for the vector potential. But it’s easy
to show that the d’Alembertian is translation-invariant, and so the problem
becomes finding a solution to

� G̃(t, ~r) = δ(t)δ(3)(~r)

and then getting the Green’s function from this via G(t, ~r; t′, ~r ′) = G̃(t −
t′, ~r − ~r ′).

Now, an actual derivation of the appropriate Green’s fucntion may be
done, but it requires some knowledge of complex analysis. I’d say it’s highly
likely that most, if not all, of you have this knowledge, but since a module
in complex analysis isn’t required, I’m not going to do it this way. Instead,
I’m going to go the unsatisfying – but correct – route of telling you what G̃
is and then showing it satisfies the correct equation.

So here we go: consider the function

G̃(t, ~r) = − 1

4π

δ
(
t− r

c

)
r

where r = |~r|. We want to compute the d’Alembertian of this, part of which
will require the Laplacian. Now, G̃ is the product of −1/4πr and δ(t− r/c),
and so we can use the handy and easy-to-prove identity

∇2(fg) = (∇2f)g + 2~∇f · ~∇g + f(∇2g)

to get

∇2G̃ =

[
∇2

(
− 1

4πr

)]
δ
(
t− r

c

)
+ 2~∇

(
− 1

4πr

)
· ~∇δ

(
t− r

c

)
− 1

4πr

[
∇2δ

(
t− r

c

)]
But we already know that the Laplacian of −1/4πr is δ(3)(~r), so the first term
is known. The second and third terms can be computed using the chain rule
and ~∇r = êr:

2~∇
(
− 1

4πr

)
· ~∇δ

(
t− r

c

)
= 2

(
êr

4πr2

)
·
[
− êr
c
δ′
(
t− r

c

)]
= − 1

2πcr2
δ′
(
t− r

c

)
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and

− 1

4πr

[
∇2δ

(
t− r

c

)]
= − 1

4πr
~∇ ·
[
− êr
c
δ′
(
t− r

c

)]
= − 1

4πr3
∂

∂r

[
−r

2

c
δ′
(
t− r

c

)]
= − 1

4πr3

[
−2r

c
δ′
(
t− r

c

)
+
r2

c2
δ′′
(
t− r

c

)]
=

1

2πcr2
δ′
(
t− r

c

)
− 1

4πc2r
δ′′
(
t− r

c

)
where the primes on the delta-functions denote derivatives. (These aren’t
strictly “functions”, but like the delta-function, may be thought of as limits
of continuous functions.)

So, if we put everything together, we obtain the Laplacian we need:

∇2G̃ = δ
(
t− r

c

)
δ(3)(~r)− 1

4πc2r
δ′′
(
t− r

c

)
.

However, the first term is nonzero only if r = 0, so we can replace t− r/c by
t without changing anything, giving

∇2G̃ = δ(t)δ(3)(~r)− 1

4πc2r
δ′′
(
t− r

c

)
.

Notice that the first term is precisely the 4-dimensional delta-function we
want in the equation that G̃ must satisfy. However, we haven’t yet computed
the time-derivatives in the d’Alembertian, but this is easy because of the
simple t-dependence in the delta-function:

∂2G̃

∂t2
= − 1

4πr

∂2

∂t2
δ
(
t− r

c

)
= − 1

4πr
δ′′
(
t− r

c

)
and we see that when we multiply this by 1/c2, it’s exactly the second term
in the Laplacian, and therefore will cancel it out in the d’Alembertian:

� G̃ = ∇2G̃− 1

c2
∂2G̃

∂t2

= δ(t)δ(3)(~r)
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and this is exactly the equation that G̃ must satisfy.
So to get the Green’s function, we replace t by t− t′ and ~r by ~r−~r ′. But

be careful; G̃ is written in terms of r = |~r|, so r is not replaced by r− r′ but
rather by |~r − ~r ′|. Therefore, we get what we’re after, the Green’s function
for the d’Alembertian operator:

G(t, ~r; t′, ~r ′) = − 1

4π

δ
(
t− t′ − |~r−~r

′|
c

)
|~r − ~r ′|

.

But there’s a bit of an issue here. Recall that Green’s functions aren’t
unique; in this case, we could add any function whose d’Alembertian vanishes
to the result we just got and obtain another solution to Green’s equation. In
fact, you can show using calculations virtually identical to what we just did
that

G+(t, ~r; t′, ~r ′) = − 1

4π

δ
(
t− t′ + |~r−~r ′|

c

)
|~r − ~r ′|

is also a Green’s function for the d’Alembertian. So which one do we use in
finding the potentials? To answer that question requires physics, not maths,
but we’ll leave that until the next lecture because it’s important enough to
explain in a bit more detail that we want to do here.
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