MP465 — Advanced Electromagnetism

Problem Set 4
Due by 5pm on Friday, 24 April 2020

Note: even though this assignment has only two problems, each of the
questions will require a bit of work and so the assignment will possibly take
as long as the usual four-question problem set. Please take this into account
when budgeting your time.

1. In lecture, we showed that an EM plane wave travelling in the positive
z-direction has the form

E = |&|éycosf+ |E,|é,cos(6 —6),

where &, and &, are the complex amplitudes of the 2- and y-components
of the electric field, § their phase difference and 0 = kz — wt + .

(a) Show that the x- and y-components of E satisfy the equation
E? 2E,E,cos6 E;

- a8 B
where A = |&;| and B = |€,| and explain why, if sind # 0, this
describes an ellipse in the £, E,-plane. (This why we say that, in
general, an EM plane wave is “elliptically polarised”.)

= sin?9,

(b) It is often convenient to describe the polarisation of such a wave by
its “ellipticity” e, defined as the length of its semiminor (smaller)
axis divided by the length of its semimajor (greater) one. This
means that 0 < ¢ < 1, with the extreme values 0 and 1 corre-
sponding to linear and circular polarisation respectively. Show
that

A2+ B2 — JA* +2A42B2cos 20 + B4
e = ,

2AB |sin |

and verify that this gives the correct values of the ellipticity for
the linearly (6 = 0 or 7) and circularly (A = B and § = £7/2)
polarised cases. (INote: In deriving the above expression, you
may assume without loss of generality that A > B.)
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Note: depending on your mathematical background — specifically, your
knowledge of conic sections — this problem may require a bit of research
on your part on how ellipses are described in Cartesian coordinates. If
you do come across any formulae that prove useful, cite your source(s);
just pulling a formula out of nowhere without stating where you got it
will result in not getting full marks.

. In lecture, when we examined the reflection and transmission of an EM
plane wave incident on a boundary, we did so for the case where the
incident electric field vector EI was hnearly polarised in the same plane
as the three wave vectors k;[, kR and kT

Now consider the case where the incident electric field is linearly-
polarised to be normal to the plane of the three wave vectors: take
z < 0 to be a linear medium with magnetic permeability of p; = pq
and index of refraction ny, and z > 0 a linear medium with perme-
ability po = pp and index of refraction n,. The boundary is hit by an
incident electric field of the form

E[ = Re [glei(ﬁl-ﬁ—wt)} éy,

where &/ is the field’s complex amplitude and the incident wave vector
is
- niw
ki = —— (sinf;é, +cosbé.).
c

(a) Find the reflected and transmitted electric fields E and Ep. (You
may assume the same things we proved in lecture, namely, that
EI, ER and ET all lie in the xz-plane, 6z = 07, nysinf; = ny sinOr
and all waves have the same frequency w,)

(b) Compute the reflection and transmission coefficients and confirm
that R+ 7T = 1.

Comment: although only a pure vacuum has permeability exactly equal
to po, most nonferromagnetic materials have magnetic susceptibilities
so small that their permeabilities can be well-approximated by puy,
which is what we do here. As an added bonus, it also makes the
calculations a bit less tedious. However, you should still be able to do
this problem for arbitrary p; and po (much as we did with the example
in lecture).



VECTOR CALCULUS FORMULAE

1. Cartesian coordinates (z,y, z) with constant unit direction vectors é,,
€y, €2
e position vector: 7= xé, + yé, + z¢é,
e line element: dr =dzé, +dyeé, +dze,

surface element: do = dydzé, +drdzé, +dxdye,
volume element: d37 = dx dy dz

e gradient of a function f(z,y,2):

L. of. of. | of.
Vf = %6$+8yey+8zez

e divergence of a vector A(x,y,2) = Ay(z,y, 2)é, + Ay(z,y, z)é, +
A (z,y,z)é,:
0A, 04, O0A,

= 7 -
v 8x+8y+82

e curl of a vector A(z,y, 2) = A,(z, v, 2)e,+A (x,y, 2)e,+A (v, y, 2)é,:

- o [0A. 04, . 0A, 0A.Y . 9A,  0A: Y |
vred = (83/ 8z)6x+(8z 0x)€y+<ax 8y)ez

e Laplacian of a function f(z,y, 2):

Pf  O*f  O*f
2
Vi 0x? + oy? + 072

2. Cylindrical coordinates (7, ¢, z) with unit direction vectors é,, ég4, €,

e relation to Cartesian coordinates: x = rcos¢, y = rsin¢g, z un-
changed

e relation to Cartesian unit vectors:

€r = COSP e, +singe, o €r = COS P e, —singéy
€y = —sing e, + cos @ e, €y = Sin@ €, + cos ¢ €y

with é, the same for both systems.
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position vector: 7= ré, + zé,

line element: d7=dreé, + rdgég +dzé,
surface element: do = rd¢ dzeé, +drdzés +rdrdeeé,
volume element: d*7 = rdrd¢dz

gradient of a function f(r, ¢, z):

0z
divergence of a vector ff(r, ¢, 2) = Ap(r, ¢, 2)é, + Ap(r, ¢, 2)ép +
A (r, ¢, 2)é,:

- 10 10A, 0A.
) — 2 (rA el N Wil
V-4 r@r(r T>+r8¢+8z

curl of a vector E('r’, ¢,2) = A (1,0, 2)é,+Ay(r, 0, 2)és+AL(1, P, 2)é,:

L [10A. 0A)\. | [0A, OA\. 1[0 A, .
Ve = (Fagb_E)e’“*(az - ar>e¢—|—;(§(7ﬂ4¢) 8¢)ez

Laplacian of a function f(r, ¢, 2):

2p _ 10 (OF\ 10°F Of
Vil = ror \' or +r28¢2+822



3. Spherical coordinates (, 6, ¢) with unit direction vectors é,., ég, €,

e relation to Cartesian coordinates: x = rsinf cos ¢, y = rsinfsin ¢,
z=rcost

e relation to Cartesian unit vectors:
ér =sinfcospé, +sinblsingé, +cosde,
€g = cosfcospé, +costlsinge, —sinf e,
€y = —singe, +cospe,
€y = sinflcos@é, + cost cospéy —sin g &,
> €, = sinfsin ¢ é, + cos 0sin ¢ &y + cos ¢ €4
€, =cosfé, —sinbég

e position vector: 7= ré,

e line element: d7 = dreé, +rdf éy + rsinfdeé,
surface element: d = r?sin0df d¢ é, + rsin0dr dep ég + rdr df é,
volume element: d*7 = r%sin 6dr df d¢

e gradient of a function f(r,6, ¢):

=, _ Of, 18f 1 of.
vi= ar &ty ro0° ot rsin@(‘?_gb%
e divergence of a vector ff(r,@, ¢) = Ap(r,0,0)é, + Ag(r,0,p)ég +
A¢(T,9,¢)é¢2
Lo,
rsinf 0¢

- 10 0
V-A = 5 (r*A,) + —(sinfAy) +

r2 Or " rsin 6 00

e curl of a vector X(r, 0,0) = A.(r,0,p)é,+Ap(r,0, d)ég+As(r,0, d)éy

.o 1 0 0Ay 1 0A, 10 .
A = A e — ———(rA
VX rsind (86(Sm9 0) = 0p ) et (rsinG (0] r@r(r ¢)> “0

1 /0 dA,
i <ar(“49> ae)

e Laplacian of a function f(r, 0, ¢):

LOf 10 of 1o
2p _ v el
vy r2 or (T (97’) T e 00 (Smeae) T i 067




