
MP465 – Advanced Electromagnetism

Problem Set 3

Due by 5pm on Thursday, 9 April 2020

1. The 3-dimensional Levi-Čivita symbol εijk, where all indices range from
1 to 3 (or x to z), is defiined by

εijk =


0 if any two indices are the same,

+1 if (ijk) is an even permutation of (123),
−1 if (ijk) is an odd permutation of (123).

It satisfies the identity

3∑
m=1

εijmεk`m = δikδj` − δi`δjk

and is used to define the cross-product via

(
~a×~b

)
i

=
3∑

j,k=1

εijkajbk.

Using the above, prove the following two vector calculus identites:

(a) ~a×
(
~∇×~b

)
+~b×

(
~∇× ~a

)
= ~∇

(
~a ·~b

)
−
(
~a · ~∇

)
~b−

(
~b · ~∇

)
~a,

(b) ~∇×
(
~a×~b

)
= ~a

(
~∇ ·~b

)
+
(
~b · ~∇

)
~a−~b

(
~∇ · ~a

)
−
(
~a · ~∇

)
~b.

2. Suppose we have a linear medium subjected to an electromagnetic field,
and we measure the magnitude of the fields inside the medium to be
15 kV · m−1 (which is about the strength of the electric field which
would give you a slight zap when touching a metal doorknob) and
5 mT (the strength of the magnetic field of a typical fridge magnet).
This fields will induce tiny electric and magnetic dipole moments in
each constituent particle of the medium; determine the magnitudes of
these moments for the following media: (a) water, (b) wood and (c)
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air. (Assume that all media are at standard temperature and pressure,
i.e. 20◦C and one atmosphere).

Note: in order to do this problem, you must take it upon yourself to look
up the necessary numbers like electric and magnetic susceptibilities,
mass densities and the like, and you must cite your sources (as all good
scientists must). Not doing so will result in marks being lost.

3. Maxwell’s equations in matter are

~∇ · ~D = ρ, ~∇× ~H = ~J +
∂ ~D

∂t
,

~∇ · ~B = 0, ~∇× ~E = −∂
~B

∂t
,

where ρ and ~J are whatever free charge and current densities might be
present. From these, show that for linear media, the energy-conservation
equation

∂u

∂t
+ ~J · ~E = −~∇ · ~S (1)

is satisfied if the electromagnetic (EM) field’s energy density u and

energy current (usually called the Poynting vector) ~S are given by,
respectively,

u =
1

2

(
~D · ~E + ~H · ~B

)
, ~S = ~E × ~H

Explanation: The first term in the left-hand side of (1) is the rate of
change of the EM field’s internal energy density; the second term is the
rate of work per unit volume done on a free charge/current distribution
by the EM field (note that the magnetic field does not contribute to
this). Thus, the left-hand side is the rate at which the total energy
density, of both the EM fields and the charge/current distribution,
changes.

The right-hand side is an energy density flow rate due to propagation
of the EM field. Thus, when integrated over a volume V , this equation
states that the energy flowing into V must equal the total rate of energy
change due to both a change in the internal EM energy and work being
done on the currents. Hence, energy is conserved for linear media.
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4. The Maxwell stress tensor T is defined to be the 3 × 3 matrix with
elements Tij given by

Tij :=
1

2

(
~D · ~E + ~H · ~B

)
δij −DiEj −HiBj.

Show that for a linear medium with permeability µ and permittivity ε,
this quantity satisfies the momentum-conservation equation

∂

∂t
(µεSi) + fi = −

3∑
j=1

∂Tij
∂xj

(2)

where

~f = ρ ~E + ~J × ~B

is the force per unit volume felt by the free charge/current distribution
(obtained from the Lorentz force law).

Explanation: µε~S is the momentum density of the EM field, so the
first term on the left-hand side of (2) is its rate of change. The second
term is the force per unit volume felt by the distribution; since force is
the same as the rate of change of momentum, ~f is the rate at which the
charge/current distribution’s momentum density changes. The right-
hand side is thus the rate of change of the total momentum density.
Thus, following the same train of thought as in the previous problem,
the right-hand side involving the stress tensor must be the rate at which
the total momentum density is being carried away from the fields and
charges (effectively, the force that’s being exerted on its surroundings).
Integrating over a volume V thus shows that the momentum flowing
into V equals the momentum lost by V . Ergo, momentum is conserved.
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VECTOR CALCULUS FORMULAE

1. Cartesian coordinates (x, y, z) with constant unit direction vectors êx,
êy, êz

• position vector: ~r = xêx + yêy + zêz

• line element: d~r = dx êx + dy êy + dz êz
surface element: d~σ = dy dz êx + dx dz êy + dx dy êz
volume element: d3~r = dx dy dz

• gradient of a function f(x, y, z):

~∇f =
∂f

∂x
êx +

∂f

∂y
êy +

∂f

∂z
êz

• divergence of a vector ~A(x, y, z) = Ax(x, y, z)êx + Ay(x, y, z)êy +
Az(x, y, z)êz:

~∇ · ~A =
∂Ax
∂x

+
∂Ay
∂y

+
∂Az
∂z

• curl of a vector ~A(x, y, z) = Ax(x, y, z)êx+Ay(x, y, z)êy+Az(x, y, z)êz:

~∇× ~A =

(
∂Az
∂y
− ∂Ay

∂z

)
êx +

(
∂Ax
∂z
− ∂Az

∂x

)
êy +

(
∂Ay
∂x
− ∂Ax

∂y

)
êz

• Laplacian of a function f(x, y, z):

∇2f =
∂2f

∂x2
+
∂2f

∂y2
+
∂2f

∂z2

2. Cylindrical coordinates (r, φ, z) with unit direction vectors êr, êφ, êz

• relation to Cartesian coordinates: x = r cosφ, y = r sinφ, z un-
changed

• relation to Cartesian unit vectors:

êr = cosφ êx + sinφ êy
êφ = − sinφ êx + cosφ êy

}
↔

{
êx = cosφ êr − sinφ êφ
êy = sinφ êr + cosφ êφ

with êz the same for both systems.
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• position vector: ~r = rêr + zêz

• line element: d~r = dr êr + rdφ êφ + dz êz
surface element: d~σ = rdφ dz êr + dr dz êφ + rdr dφ êz
volume element: d3~r = rdr dφ dz

• gradient of a function f(r, φ, z):

~∇f =
∂f

∂r
êr +

1

r

∂f

∂φ
êφ +

∂f

∂z
êz

• divergence of a vector ~A(r, φ, z) = Ar(r, φ, z)êr + Aφ(r, φ, z)êφ +
Az(r, φ, z)êz:

~∇ · ~A =
1

r

∂

∂r
(rAr) +

1

r

∂Aφ
∂φ

+
∂Az
∂z

• curl of a vector ~A(r, φ, z) = Ar(r, φ, z)êr+Aφ(r, φ, z)êφ+Az(r, φ, z)êz:

~∇× ~A =

(
1

r

∂Az
∂φ
− ∂Aφ

∂z

)
êr +

(
∂Ar
∂z
− ∂Az

∂r

)
êφ +

1

r

(
∂

∂r
(rAφ)− ∂Ar

∂φ

)
êz

• Laplacian of a function f(r, φ, z):

∇2f =
1

r

∂

∂r

(
r
∂f

∂r

)
+

1

r2
∂2f

∂φ2
+
∂2f

∂z2
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3. Spherical coordinates (r, θ, φ) with unit direction vectors êr, êθ, êφ

• relation to Cartesian coordinates: x = r sin θ cosφ, y = r sin θ sinφ,
z = r cos θ

• relation to Cartesian unit vectors:

êr = sin θ cosφ êx + sin θ sinφ êy + cos θ êz
êθ = cos θ cosφ êx + cos θ sinφ êy − sin θ êz

êφ = − sinφ êx + cosφ êy


↔


êx = sin θ cosφ êr + cos θ cosφ êθ − sinφ êφ
êy = sin θ sinφ êr + cos θ sinφ êθ + cosφ êφ

êz = cos θ êr − sin θ êθ

• position vector: ~r = rêr

• line element: d~r = dr êr + rdθ êθ + r sin θdφ êφ
surface element: d~σ = r2 sin θdθ dφ êr + r sin θdr dφ êθ + rdr dθ êφ
volume element: d3~r = r2 sin θdr dθ dφ

• gradient of a function f(r, θ, φ):

~∇f =
∂f

∂r
êr +

1

r

∂f

∂θ
êθ +

1

r sin θ

∂f

∂φ
êφ

• divergence of a vector ~A(r, θ, φ) = Ar(r, θ, φ)êr + Aθ(r, θ, φ)êθ +
Aφ(r, θ, φ)êφ:

~∇ · ~A =
1

r2
∂

∂r

(
r2Ar

)
+

1

r sin θ

∂

∂θ
(sin θAθ) +

1

r sin θ

∂Aφ
∂φ

• curl of a vector ~A(r, θ, φ) = Ar(r, θ, φ)êr+Aθ(r, θ, φ)êθ+Aφ(r, θ, φ)êφ:

~∇× ~A =
1

r sin θ

(
∂

∂θ
(sin θAφ)− ∂Aθ

∂φ

)
êr +

(
1

r sin θ

∂Ar
∂φ
− 1

r

∂

∂r
(rAφ)

)
êθ

+
1

r

(
∂

∂r
(rAθ)−

∂Ar
∂θ

)
êφ

• Laplacian of a function f(r, θ, φ):

∇2f =
1

r2
∂

∂r

(
r2
∂f

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂f

∂θ

)
+

1

r2 sin2 θ

∂2f

∂φ2
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