
MP465 – Advanced Electromagnetism

Lecture 17 & 18 Part II (9 April 2020)

2. General Consequences of the Boundary Conditions
What we’ll now do is look at the consequences of these for a very realistic

case, the case where we have a known EM plane wave travelling through a
medium and encountering another medium. More specifically, consider the
case mentioned a while ago where the region z < 0 is filled with medium 1
and z > 0 filled with medium 2. We now send a known EM plane wave from
inside medium 1 and try to figure out what the fields everywhere in space
are.

So we assume we have an incident monochromatic EM plane wave which
we are free to pick as we choose. (Think of setting up a laser and blasting
some material with its beam.) Thus, we know its frequency ω, its wave vector

~kI and its polarisation given by some complex electric amplitude vector ~̃E0

so that the fields are

~EI(t, ~r) = Re
[
~̃E0e

ı̇(~kI ·~r−ωt)
]
, ~BI(t, ~r) =

~kI
ω
× ~Ei(t, ~r).

Recall we’ve picked a coordinate system where the boundary is the xy-plane,
but this only specifies the z-axis, not the x- or y axes. Thus, without loss of
generality, we can pick these axes so that the incident wave vector ~kI lies in
the xz-plane, giving us the diagram below.

Note that this now allows us to define the angle of incidence θI as the
angle between ~kI and the z-axis, meaning that we can write

~kI =
n1ω

c
(sin θI êx + cos θI êz)

because this wave is in medium 1 and therefore |~kI | = ω/v1 = n1ω/c. If we
put this wave vector in explicitly, then that gives

~EI(t, ~r) = Re

{
~̃E0 exp

[
ı̇ω

c
(n1 sin θI x+ n1 cos θI z − ct)

]}
.

Now, let’s invoke some results we saw in MP205: if a wave travels along a
string with a given mass density, but then encounters a part of the string with
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a different mass density, then is splits into a backwards-travelling reflected
wave and a forward-travelling transmitted wave. We assume the same hap-
pens here, namely, that as a result of the incident wave hitting the boundary,
there is a reflected wave in medium 1 of the form

~ER(t, ~r) = Re
[
~̃E0Re

ı̇(~kR·~r−ωRt)
]
, ~BR(t, ~r) =

~kR
ω
× ~ER(t, ~r).

and a transmitted wave in medium 2 of the form

~ET (t, ~r) = Re
[
~̃E0T e

ı̇(~kT ·~r−ωT t)
]
, ~BT (t, ~r) =

~kT
ω
× ~ET (t, ~r).

In principle, the two wave vectors can point in any directions, so in general
we can say is that that phases in the exponentials may be written as

~kR~r − ωRt = kRxx+ kRyy + kRzz − ωRt,

~kT~r − ωT t = kTxx+ kTyy + kTzz − ωRt
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with the only obvious restrictions being that kRz < 0 (so that it’s travelling
from the boundary through medium 1) and kTz > 0 (so that it’s travelling
from the boundary through medium 2).

But we just talked about the boundary conditions all the fields have to
satisfy. In this case, they’re all at z = 0, but much hold over the entire
boundary and at all times, i.e. for all values of x, y and t. But at the
boundary, the phase of the incident wave is n1ω sin θi x/c− ωt, which means
that the phases of all other waves must have the same form: specifically, they
can’t have any y-dependence and their time dependence must be −ωt. Thus,
none of the wave vectors can have a y-component and thus are all coplanar
(in this case all in the xz-plane). Plus, all frequencies are the same; the
reflected and transmitted waves are the same colour as the incident wave.

If they’re all coplanar, this means we can define the angle of reflection θR
and angle of transmission θR as shown and thus |~kR| = ω/v1 = n1ω/c and

and |~kT | = ω/v2 = n2ω/c. All of this gives explicit expression for the two
new wave vectors:

~kR =
n1ω

c
(sin θR êx − cos θR êz) ,

~kT =
n2ω

c
(sin θT êx + cos θT êz)

But by again invoking the matching of the phases at the boundary, we note
that the x-dependence of all three waves must also be the same at z = 0,
and this gives us possibly the two most famous theorems in classical optics!
First, if the x-dependence of the incident and reflected wave must be the
same, then n1ω sin θR x/c = n1ω sin θI x/c, or θI = θR: the angle of incidence
is equal to the angle of reflection. A light beam bounces off a surface at the
same angle as it hits it.

Second, the matching of the x-dependence of the incident and transmitted
wave implies n2ω sin θT x/c = n1ω sin θI x/c, or n1 sin θI = n2 sin θT . This
relation between the transmission angle and incidence angle is known as
Snell’s law and has been known empirically for centuries. It implies that if
n1 6= n2 then θT 6= θI and the light beam changes direction when it moves
across the boundary; it refracts. This is precisely why we use the term “index
of refraction” (and also explains the cover image of Dark Side of the Moon).

So from this very general argument, we have derived the following basic
facts about what happens when a EM wave hits a boundary, and we can
take them as given (i.e. we don’t have to rederive them every single time):
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all waves have the same frequency, all the wave vectors are coplanar and,
with the angles defined as above, θI = θR and n1 sin θI = n2 sin θT .

The main reason for initially taking care of the spacetime dependence first
is that now our boundary conditions need only be imposed on the amplitude
vectors of the various fields, namely, all these constant complex vectors flying
around the place.

To see how this works we see that in medium 1, the total electric field is
~EI + ~ER and in medium 2 it’s ~ET , so at the boundary z = 0,

~E1 = ~EI + ~ER

∣∣∣
z=0

= Re

{(
~̃E0 + ~̃E0R

)
exp

[
ı̇ω

c
(n1 sin θI x− ωt)

]}
,

~E2 = ~ET

∣∣∣
z=0

= Re

{
~̃E0T exp

[
ı̇ω

c
(n1 sin θI x− ωt)

]}
,

where we’ve used θI = θR and Snell’s law. Thus, since the spacetime depen-
dence is the same for both fields at the boundary, any conditions they must
satisfy must be satisfied purely by the constant amplitude vectors. The same
argument holds when we look at the magnetic, electric displacement and
magnetic intensity fields: the sum of the incident and reflected amplitude
vectors and the transmitted amplitude vector must satisfy the appropriate
boundary condition.

And this will completely solve the problem: we’re given the properties of
each medium (permittivities, etc.), an initial frequency ω, and initial direc-

tion θI and an initial amplitude/polarisation ~̃E0. θR and θT are determined

from θI and the two indices of refraction, leaving only ~̃E0R and ~̃E0T as un-
knowns. These are six complex numbers, but notice that that’s exactly how
many equations we have from the boundary conditions: two from the normal
components of ~D and ~B and four from the parallel components of ~E and ~H!
We have the same number of equations as unknowns, so we’re guaranteed to
be able to find a unique solution.

(Well, almost; if you look at a weird situation like when the incident wave
is parallel to the surface, i.e. θI = π/2, you don’t get a unique solution. But
for all nonpathological cases, we can find a solution.)
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3. An Example
The previous section describes what we’d do the general case, but instead,

in this section we’ll look at a specific polarisation for the incident wave and
see how we use the above-described boundary conditions to solve for the
fields. (Another specific – and slightly easier – choice of polarisation will be
left for you to do in the next problem set.)

So what we’ll do is assume that our incident electric field is linearly po-

larised in the xz-plane, i.e. ~̃E0 has no y-component. However, we know it
can’t be any such vector; it must be perpendicular to the wave vector ~kI , as
shown on the next page.

It’s a matter of simple trigonometry to show that this choice gives

~̃E0 = EI (cos θI êx − sin θI êz)

where EI is the incident amplitude (the strength of our laser beam, if you

like). Now, there’s also the reflected wave, and its amplitude vector ~̃E0R must

be perpendicular to its wave vector ~kR. This condition only gives a relation
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between its x- and z-components, since any component in the y-direction
will automatically be normal to ~kR. Thus, the most general form is

~̃E0R = −ER (cos θR êx + sin θR êz) + ẼRyêy

for some numbers ER and ẼRy. Similar reasoning says the the most general

vector ~̃E0T that’s perpendicular to ~kT is

~̃E0T = ER (cos θT êx − sin θT êz) + ẼTyêy

Now let’s impose the boundary conditions on the electric field, namely, that
the two components parallel to the boundary must match across the bound-
ary. In this case, those are the x- and y components, so we see that(

~̃E0 + ~̃E0R

)
x

=
(
~̃E0T

)
x
⇒ EI cos θI − ER cos θR = ET cos θT ,(

~̃E0 + ~̃E0R

)
y

=
(
~̃E0T

)
y
⇒ ẼRy = ẼTy.

Now for the displacement field: in a linear medium with permittivity ε, we
know that ~D = ε ~E, so in medium 1, this is ε1( ~EI + ~ER) and in medium 2 it’s

ε2 ~ET . The normal component of both must be identical at the boundary, and
here it’s the z-component. This condition must be satisfied by the amplitude
vectors, giving

ε1

(
~̃E0 + ~̃E0R

)
z

= ε2

(
~̃E0T

)
z
⇒ −ε1 (EI sin θI + ER sin θR) = −ε2ET sin θT .

But notice that we already have two equations involving ER and ET , so we
can solve them immediately: using θR = θI and rearranging the first and
third equations above gives

ER +
cos θT
cos θI

ET = EI ,

ER −
ε2 sin θT
ε1 sin θI

ET = ER −
n1ε2
n2ε1

ET = −EI .

where we used sin θT/ sin θI = n1/n2 in the the second equation. Now you
can solve these simultaneous equations using whatever your favourite method
is, with the result being

ER =

(
n1ε2 cos θI − n2ε1 cos θT
n1ε2 cos θI + n2ε1 cos θT

)
EI ,

ET =

(
2n2ε1 cos θI

n1ε2 cos θI + n2ε1 cos θT

)
EI .
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(We could replace θT by arcsin(n1 sin θI/n2) if we wanted everything in terms
of the incident wave parameters, but let’s not and just assume we’ll compute
θT when we need it.)

Sadly, we’re not done; we still need to impose the conditions on the
magnetic and magnetic intensity field. These will be three more equations,
but it seems like we now only have two unknown parameters, ẼRy and ẼTy.
We’ve determined ER and ET . Luckily, two of the upcoming equations will
give us results we already know, as we now see...

We now need to compute the magnetic fields for each wave, but this is
easy (if a little tedious):

~̃B0 =
~kI
ω
× ~̃E0 =

n1EI
c
êy,

~̃B0R =
~kR
ω
× ~̃E0R =

n1

c

[
ẼRy (cos θRêx + sin θRêz) + ERêy

]
,

~̃B0T =
~kT
ω
× ~̃E0T =

n2

c

[
ẼTy (− cos θT êx + sin θT êz) + ET êy

]
.

One of our conditions is continuity of B⊥ across the boundary, and here that
means (

~̃B0 + ~̃B0R

)
z

=
(
~̃B0T

)
z
⇒ n1Ẽ0R sin θR = n2Ẽ0T sin θT ,

but if we use Snell’s law, this says Ẽ0R = Ẽ0T , which we already knew. Now,
since ~H = ~B/µ, the magnetic intensity in medium 1 is ( ~BI + ~BR)/µ1 and in

medium 2 it’s ~BT/µ2, so matching the parallel components at the boundary
gives

1

µ1

(
~̃B0 + ~̃B0R

)
x

=
1

µ2

(
~̃B0T

)
x
⇒ n1Ẽ0R cos θR

µ1

= −n2Ẽ0T cos θT
µ2

,

1

µ1

(
~̃B0 + ~̃B0R

)
y

=
1

µ2

(
~̃E0T

)
y
⇒ n1

µ1

(EI + ER) =
n2

µ2

ET .

But the second of these is also redundant: using the definition of the index
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of refreaction and Snell’s law, we see that

n1

µ1

=
n2
1

µ1

1

n1

= ε1
sin θI

n2 sin θT

=
n2ε1 sin θI
n2
2 sin θT

=

(
ε1 sin θI
ε2 sin θT

)
n2

µ2

so, in fact, this equation is that same as we got from the Dz condition.
So the only remaining unsolved equations are

Ẽ0R − Ẽ0T = 0, n1Ẽ0R cos θR/µ1 + n2Ẽ0T cos θT/µ2 = 0,

and since we assume all angles are strictly less that π/2 (the pathological
case I mentioned earlier), the only solution to these is Ẽ0R = Ẽ0T = 0: like
the incident electric field, the reflected and transmitted electric fields have
no y-component and are thus given entirely in terms of the expressions for
ER and ET above.

And we’re done, at least for this particular case. In the next problem set,
I’ll ask you to do the case where the incident field has only a y-component,
~̃E0 = EI êy. It’s slightly less tedious than this case, but still uses the same
idea of matching the appropriate components of the various fields in medium
1 to those in medium 2.

4. Reflection and Transmission Coefficients
Now let’s take a look at how the energy carried by the incident wave

behaves. We know that the time-averaged power flowing through a surface
element d~σ is dP̄ = 〈~S〉 · d~σ. If the surface element is on the boundary

between two media, and the incident wave is ~EI = Re[ ~̃E0e
ı̇(~kI ·~r−ωt)], then the

time-averaged incident energy current is 〈~SI〉 = ~kI | ~̃E0|2/2µ1ω and thus the
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rate at which the incident wave deposits energy onto this bit of boundary is

dP̄I = 〈~SI〉 · d~σ

=
~kI | ~̃E0|2

2µ1ω
· d~σ

=
n1

2µ1

| ~̃E0|2dσ cos θI

where θI is the angle between the incident wave’s direction and the normal
to the surface.

Now we ask, what’s the rate at which this energy leaves this bit of bound-
ary? Since the reflected wave is also in medium 1 and has amplitude vector
~̃E0R, we have 〈~SR〉 = ~kR| ~̃E0R|2/2µ1ω and thus the reflected power is

dP̄R = 〈~SR〉 · d~σ

=
n1

2µ1

| ~̃E0R|2dσ cos θR.

The transmitted wave is in medium 2 and has amplitude vector ~̃E0T so 〈~ST 〉 =

~kT | ~̃E0R|2/2µ2ω and so the transmitted power is

dP̄T = 〈~ST 〉 · d~σ

=
n2

2µ2

| ~̃E0T |2dσ cos θT .

We now define the reflection and transmission coefficients, denoted R and T
respectively, to be the ratios of the reflected and transmitted powers to the
incident power, i.e.

R =
dP̄R

dP̄I

=
| ~̃E0R|2

| ~̃E0|2
,

T =
dP̄T

dP̄I

=
n2µ1 cos θT
n1µ2 cos θI

| ~̃E0T |2

| ~̃E0|2

(where we’ve used θI = θR).
In the absence of free charges/currents, all of the energy hitting the

boundary must be accounted for by the reflected and transmitted energy,
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so conservation of energy requites dP̄I = dP̄R + dP̄T , namely, R+ T = 1. (If
there are free charges, then some of the energy could be carried away in the
form of kinetic energy and so R + T < 1.) Let’s compute these coefficients
for the example we considered in the previous section and make sure this
identity holds.

With ~̃E0 = EI(cos θI êx − sin θI êz), we found ~̃E0R = −ER(cos θR êx +

sin θR êz) and ~̃E0T = ET (cos θT êx − sin θT êz) with

ER =

(
n2ε2 cos θI − n1ε1 cos θT
n2ε2 cos θI + n1ε1 cos θT

)
EI ,

ET =

(
2n1ε1 cos θI

n2ε2 cos θI + n1ε1 cos θT

)
EI .

The reflection coefficient is therefore

R =
| ~̃E0R|2

| ~̃E0|2
,

=

(
n1ε2 cos θI − n2ε1 cos θT
n1ε2 cos θI + n2ε1 cos θT

)2

and the transmission coefficient is

T =
n2µ1 cos θT
n1µ2 cos θI

| ~̃E0T |2

| ~̃E0|2

=
n2µ1 cos θT
n1µ2 cos θI

4n2
2ε

2
1 cos2 θI

(n1ε2 cos θI + n2ε1 cos θT )2

=
n2
2µ1ε1
n2
1µ2ε2

4n1n2ε1ε2 cos θI cos θT

(n1ε2 cos θI + n2ε1 cos θT )2

=
4n1n2ε1ε2 cos θI cos θT

(n1ε2 cos θI + n2ε1 cos θT )2

since n2
1/n

2
2 = µ1ε1/µ2ε2. You should be able to quickly show that

(n1ε2 cos θI − n2ε1 cos θT )2 + 4n1n2ε1ε2 cos θI cos θT = (n1ε2 cos θI + n2ε1 cos θT )2

and this will allow you to confirm that R+T = 1 for this particular case (as
it must be in all cases with no free charges or currents).
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