
MP465 – Advanced Electromagnetism

Lectures 17 & 18 Part I (9 April 2020)

C. Plane Waves in across Boundaries: Reflec-
tion and Refraction
1. Boundary Conditions

Everything we’ve talked about in this section up to this point has all been
within a single linear medium, but now we look at what happens when we
have two linear media. Within either one of them, we know most everything
about plane wave solutions, but what about if a plane wave goes from one
medium into another? What happens then?

To answer these questions, we have to look at what goes on at the bound-
ary between the two media. To do so, we need to list what we know: first off,
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each media has its own permittivity, permeability and index of refraction, ε1,
µ1 and n1 =

√
µ1ε1/µ0ε0 for medium 1, and similarly for medium 2.

Next, we assume the boundary is smooth, so at any point on the boundary
it looks flat if we zoom up close. Thus, we can always locally pick a Cartesian
coordinate system such the the boundary is in the xy-plane, with medium
1 in the z < 0 region and medium 2 in the z > 0 region, as shown on the
previous page.

If we continue to assume there are no free charges in the system, then
we have the same Maxwell equations as before, except this time we’ll write
them in integral form: for any closed surface Σ,∮

Σ

~D · d~σ = 0,

∮
Σ

~B · d~σ = 0,

and for any open surface S with boundary (a closed curve) C,∮
C

~E · d~r = − ∂

∂t

∫
S

~B · d~σ,
∮
C

~H · d~r =
∂

∂t

∫
S

~D · d~σ,

Now, let’s look at what the first of these implies: suppose we take Σ to
be a little cylinder straddling the boundary, as shown on the next page. The
two caps are Σ1 in medium 1 and Σ2 in medium 2, and the cylindrical shell
Σ′ crosses the boundary. Obviously,∮

Σ

~D · d~σ =

∫
Σ1

~D · d~σ +

∫
Σ2

~D · d~σ +

∫
Σ′

~D · d~σ

but because the length of Σ′, ∆z, is assumed to be extremely small, the last
of these integrals will be negligible, leaving only the first two. Now, on Σ1,
the unit normal is −êz and if the cross-sectional area A is small, we expect
the displacement field to be approximately constant on Σ1; let’s call it ~D1.
All of this gives the first of the above integrals to be −D1zA. On Σ2, the unit
normal is êz, so an analagous argument gives D2zA for the second integral.
Thus, we have the condition −D1zA + D2zA = 0, or D1z = D2z. More
generally, this may be written as(

~D2 − ~D1

)
⊥

∣∣∣
boundary

= 0.

In other words, the component of the electric displacement field perpendicular
to the boundary must be the same on either side of the boundary.
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Now, the second of Maxwell’s equations above has exactly the same form
except with ~D replaced by ~B, so the same argument can be applied with an
analagous result: (

~B2 − ~B1

)
⊥

∣∣∣
boundary

= 0

or the component of the magnetic field perpendicular to the boundary must
be the same on either side of the boundary.

Let’s now go to the third Maxwell equation above and see what it says:
take the surface S to be a little rectangular region depicted below parallel to
the xz-plane straddling the boundary with width ∆z and height ∆x, both
assumed to be very small.

Then we expect the surface integral
∫
S
~B · d~σ to be of size ∆x∆z, which

will go to zero as we shrink ∆z to zero. Thus, for this particular case, we
expect

∮
C
~E · d~r to be very close to zero.

But this line integral can be broken up into four integrals each over the
individual sides. The integrals over C3 and C4 will each be of order ∆z and
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thus will become negligible in the ∆z → 0 limit. On C1, we see d~r = −êxdx,
so if we say that the electric field just to the left of the boundary is ~E1,
then this integral gives −E1x∆x as its value. Similarly, the integral over C2

will give E2x∆x. Thus, we get the result that −E1x∆x + E2x∆x = 0, or
E1x = E2x.

But we could have just as well taken S to have been a rectangle straddling
the boundary parallel to the yz-plane; if this rectangle has side lengths ∆y
and ∆Z, then the exact same type of argument as above will give E1y = E2y.
But the x- and y-components are precisely those parallel to the boundary,
which gives us the generalised result(

~E2 − ~E1

)
‖

∣∣∣∣
boundary

= 0.

In other words, the components of the electric field parallel to the boundary
must be the same on either side of the boundary.

Finally, the last Maxwell equation, but we’re already done the work: if
we repeat the preceding argument with ~E replaced by ~H and ~B replaced by
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− ~D, we get (
~H2 − ~H1

)
‖

∣∣∣∣
boundary

= 0.

or the components of the magnetic intensity field parallel to the boundary
must be the same on either side of the boundary.

Let’s restate all of this again, because these results lie at the heart of
any discussion of EM waves travelling between two different media. If we
assume that there are no free charges or currents, then the following have to
be continuous at the boundary, i.e. have the same value regardless of which
side of the boundary we’re on:

• D⊥, the component of the electric displacement field normal to the
boundary;

• B⊥, the component of the magnetic field normal to the boundary;

• ~E‖, the two components of the electric field parallel to the boundary;

• ~H‖, the two components of the magnetic intensity field parallel normal
to the boundary;

(In the case where the boundary lies in the xy-plane, these are equivalent to
the continuity of Dz, Bz, Ex, Ey, Hx and Hy at z = 0.)
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