
MP465 – Advanced Electromagnetism

Lectures 15 & 16 (2 April 2020)

B. Plane Waves in Linear Media
1. Plane Waves in a Single Medium

For the rest of this section, we’re going to concentrate on linear media
only, i.e. ones with a given permittivity ε and permeability µ. Furthermore,
we’re going to assume that the medium contains no free charges or currents,
only bound ones. This means that both ρ and ~J vanish and we have the free
sourceless equations

~∇ · ~D = 0, ~∇× ~E = −∂
~B

∂t
,

~∇ · ~B = 0, ~∇× ~H =
∂ ~D

∂t
.

With ~D = ε ~E and ~H = ~B/µ, these become

~∇ · ~E = 0, ~∇× ~E = −∂
~B

∂t
,

~∇ · ~B = 0, ~∇× ~B = µε
∂ ~E

∂t
.

If we take the curl of the second of these, we get

~∇×
(
~∇× ~E

)
= ~∇

(
~∇ · ~E

)
−∇2 ~E

= −~∇× ∂ ~B

∂t
.

Since ~∇· ~E = 0 and we can change the order of partial derivatives, this gives

−∇2 ~E = − ∂

∂t
~∇× ~B

and then using the last of Maxwell’s equations results in

∇2 ~E = µε
∂2 ~E

∂t2
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which we all (hopefully) recognise as a wave eqution! This means that the
three components of the electric field all propagate as waves. Furthermore,
recall that the constant multiplying the second time derivative is the inverse-
square of the speed of propagation, i.e. the field travels through the medium
with speed v = 1/

√
µε. Taking the curl of the last equation shows that the

magnetic field also satisfies the same equation with the same propagation
speed.

Let’s look at this speed: we cam rewrite it as

v =
1
√
µε

=

√
µ0ε0
µε

1
√
µ0ε0

=
c

n

where c = 1/
√
µ0ε0 is the speed of light and the quantity n =

√
µε/µ0ε0

is the index of refraction of the medium under consideration. For vacuum,
n = 1 and for all other media, n > 1 and thus electromagnetic (EM) waves –
light – travel slower than the speed of light. This is due to the bound charges:
as the wave moves through the medium, it interacts with the constituents,
and thus sort of “bumps into” all the atoms and molecules, thus slowing it
down. (Think about trying to get to the bar to buy a round when the pub’s
full compared to when it’s empty.)

Now, you’ve all taken MP205 or the equivalent, and so we already know
what sort of solutions we get to the wave equation. The particular solution
we’re interested are plane wave solutions, which we know are characterised by
a frequency ω and a wave vector ~k. The wave vector points in the direction of
propagation and its magnitude is given by the dispersion relation ω = |~k|v,

which for the EM waves we are looking at gives k = |~k| = nω/c. (Or
alternatively, the wavelength λ is 2π/k = 2πc/nω, a factor of 1/n shorter
than the vacuum wavelength.)

The general form for a plane wave solution is A cos(~k ·~r−ωt+α), where
A and α are the amplitude and phase of the wave. However, we know that

we can write this as Re[Ãeı̇(
~k·~r−ωt)] where Ã = Aeı̇α is the wave’s complex

amplitude. Thus, the general form for the solution to the wave equation for
the electric field may be written as

~E (t, ~r) = Re
[
~̃E0e

ı̇(~k·~r−ωt)
]
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where ~̃E0 is a constant complex-valued vector. We can also do the same for
the magnetic field:

~B (t, ~r) = Re
[
~̃B0e

ı̇(~k·~r−ωt)
]

where ~̃B0 is also a constant complex-valued vector.
Using these forms is incredibly convenient because each time derivative of

the complex exponential simply multiplies it by −ı̇ω and every application of
a gradient multiplies it by ı̇~k; by using these tricks with the wave equation,
we get −(~k ·~k) ~E = −µεω2 ~E (and the same for ~B) which just reproduces the
dispersion relation. More useful is looking not at the wave equation but at
Maxwell’s equations. For example, if we use the above form for the electric
field, we see

∂ ~B

∂t
= −~∇× ~E

= −Re
[
ı̇~k × ~̃E0e

ı̇(~k·~r−ωt)
]

which says the magnetic field must also be a plane wave with the same wave
vector and frequency as the electric field (a fact that was not immediate from
the wave equation alone). This means that

∂ ~B

∂t
= Re

[
−ı̇ω × ~̃B0e

ı̇(~k·~r−ωt)
]

and thus we see that the amplitudes of the two fields are related by

~̃B0 =
~k

ω
× ~̃E0 ⇒ ~B(t, ~r) =

~k

ω
× ~E(t, ~r)

(since ~k/ω is real) and thus the magnetic field is perpendicular to both ~k and
~E.

If we use this trick with the equation ~∇ · ~E = 0, we see

Re
[
ı̇~k · ~̃E0e

ı̇~k·~r=ωt)
]

= 0 ⇒ ~k · ~E(t, ~r) = 0,

namely, the wave vector and the electric field are perpendicular. So the
upshot is that for EM plane waves, the electric field, the magnetic field and
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the wave vector form a right-handed triad: ( ~E, ~B,~k) have the same relation
as (êx, êy, êz), as shown above.

Now, there are two more equations, but they’re automatically satisfied:
~∇ · ~B = 0 implies ~k · ~B = 0, but we already knew this from ~B = ~k × ~E/ω.

And ~∇× ~B = µε∂ ~E/∂t gives ~k × ~B = −µεω ~E, but notice that

~k × ~B = ~k ×

(
~k

ω
× ~E

)
=

1

ω

[
~k
(
~k · ~E

)
− ~E(~k · ~k)

]
= −k

2

ω
~E

which, since k2 = µεω2, gives full agreement.

So, to summarise, if we have a linear medium with no free sources, then
there exist monochromatic plane wave solutions of frequency ω, with the
electric field given by

~E (t, ~r) = Re
[
~̃E0e

ı̇(~k·~r−ωt)
]

for some complex vector ~̃E0, where ~k points in the direction of propagation
and k = nω/c, with n =

√
µε/µ0ε0 being the medium’s index of refraction.

The magnetic field is then

~B (t, ~r) = Re
[
~̃B0e

ı̇(~k·~r−ωt)
]
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where ~̃B0 = ~k × ~̃E0/ω (and so ~B = ~k × ~E/ω).
Now, a bit of a comment on this index of refraction thingie: recall that

when we indroduced the permeability, it was defined (for nonferromagnetic
media) via the magnetic susceptibility by µ = µ0(1 + χm). However, any
glance at a list of susceptibilities will quickly show you that they’re all gen-
erally quite small, with the largest having magnitude of the order of 10−4,
Therefore, for almost all materials, µ ≈ µ0 and we will often (but not always)
be able to make this approximation. If we do so, then we see that the index
of refraction is just the square root of the material’s relative permittivity,
n ≈

√
ε/ε0 or alternatively, ε ≈ n2ε0.

2. Polarisation of EM Plane Waves
Now, you may think we’ve pretty much figured everything out about EM

plane waves in a linear medium, but we haven’t. Notice that we still have
some freedom to pick some of the quantities involved: the frequency ω, the
direction of propagation k̂ = ~k/k and the complex electric amplitude vector

~̃E0. (Note that k = nω/c is fixed once we pick ω, provided we know the index

of refraction of the medium). Now, we know that ~k and ~̃E0 are perpendicular,

so once the diorection of ~k is picked, then ~k · ~̃E0 = 0 puts some constraints
on the electric amplitude vector.

For example, if we pick a coordinate system such that the positive z-
direction is the same as the wave’s propagation direction, then ~k = nωêz/c

and ~̃E0 must lie purely in the xy-plane, so ~̃E0 = Exêx + Eyêy, where Ex and
Ey are complex numbers, so we still have four real numbers that we can pick
freely. (Note that once these are picked, the magnetic amplitude vector is

~̃B0 =
~k

ω
× ~̃E0

=
nêz
c
× (Exêx + Eyêy)

= −nEy
c
êx +

nEx
c
êx

which is completely determined.) If we choose to specify both of these com-
plex numbers in polar notation, namely

Ex = |Ex| eı̇αx , Ey = |Ey| eı̇αy ,
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then we see the elecric field is

~E = Re
[
(Exêx + Eyêy) eı̇(

~k·~r−ωt)
]

= |Ex| cos (kz − ωt+ αx) êx + |Ey| cos (kz − ωt+ αy) êy

Now, the choice of one of the phases is somewhat arbitrary because it can
always be eliminated by choosing to start our measurement of time such that
one of the components is at the beginning of its cycle. For example, if the
time we measure is t′ = t−αx/ω, then the x-component depends on kz−ωt′,
so t′ = 0 corresponds to the choice that this component is a standard cosine
cos kz in space. The argument of the y-component is then kz−ωt′−αx+αy,
so in reality, the wave depends not on the two phases separately, but on their
difference δ = αx − αy. Thus, without too much loss of generality, we can
take the standard form for our electric field to be

~E = |Ex| cos (kz − ωt) êx + |Ey| cos (kz − ωt− δ) êy

and thus to specify any given EM wave, we need to specify the x-amplitude
Ex, the y-amplitude Ey and the relative phase difference δ (taken between −π
and π). Any such choice is called a polarisation of the wave.

To get a rough idea of what such a choice entails, look at the plot on
the next page; the two magnitudes specify the amplitude of each of the
cosinusoidal oscillations, and the phase difference gives an idea of which
component starts its cycle earlier. The plot above is for δ > 0, and we
see that the x-component “leads” the y-component: it starts at its peak
value of |Ex|, whereas the y-component hasn’t yet reached |Ey| and so is said
to “lag” the x-component. For δ < 0, the situations are swapped, and for
δ = 0, the two are “in phase”. For δ = ±π, one reaches its maximum value
when the other reaches its minimum and the components are “completely
out of phase”.

In fact, the δ = 0 and δ = π cases are special enough to be looked at a bit
more: if δ = 0, then (if we take the convention αx = 0 as described above)
Ex = |Ex| cos(kz − ωt) and Ey|Ey| cos(kz − ωt), or Ey = |Ey/Ex|Ex. In other
words, the y-component is positively proportional to the x-component. This
means if we plot Ey as a function of Ex, we get a line segment with positive
slope with endpoints (|Ex|, |Ey|) and (−|Ex|,−|Ey|), and thus the tip of the

vector ~E oscillates back and forth on this line.
Something similar happens if the two components are completely out of

phase, δ = π. Again, Ex = |Ex| cos(kz − ωt), but now Ey = |Ey| cos(kz −
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ωt− π) = −|Ey| cos(kz−ωt). This gives Ey = −|Ey/Ex|Ex, a line segment of
negative slope with endpoints (|Ex|,−|Ey|) and (−|Ex|, |Ey|). But despite the
difference in sign, the upshot is that same as for the δ = 0 case: the tip of
the vector ~E always stays on a line. Because of this behaviour, we say that
any EM wave with either δ = 0 or δ = π is linearly polarised.

Another class of polarisation occurs when the two components have the
same magnitude (|Ex| = |Ey|) and the phase difference is either π/2 or −π/2.
If δ = π/2, then, as always, Ex = |Ex| cos(kz − ωt) but Ey = |Ey| cos(kz −
ωt − π/2) = |Ex| sin(kz − ωt). Or if we let θ = kz − ωt, Ex = |Ex| cos θ and
Ey = |Ex| sin θ. Thus, as θ increases (say, if we fix a time and move spatially

in the positive z-direction), the tip of ~E traces out a circle of radius |Ex| in
an anticlockwise direction. Such an EM wave is said to be right-circularly
polarised, because the tip of the vector rotates in the same direction as your
fingers would wrap if you pointed the thumb of your right hand in the wave’s
propagation direction.

You can probably guess the next case: if |Ex| = |Ey| and δ = −π/2, Ey =
|Ey| cos(kz − ωt+ π/2) = −|Ex| sin(kz − ωt), so since Ex = |Ex| cos(kz − ωt),
the tip of the electric field traces out a circle of radius |Ex| in a clockwise
direction with increasing θ, and so we denote it as a left-circularly polarised
EM wave.
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These are just special cases, of course. In general, the three parameters
we need – |Ex|, |Ey| and δ – could be just about anything. In the next
problem set, I’ll have you look at the general case and ask you to explain
why we describe an EM wave that’s not one of the special cases above as
elliptically polarised. But now, we move onto other important properties of
an EM wave...

3. Energy and Momentum of EM Plane Waves
We know an EM field carries both energy and momentum: the expres-

sions giving the energy density and energy current forr a linear medium are,
respectively,

u =
1

2

(
~E · ~D + ~B · ~H

)
=
ε

2
| ~E|2 +

1

2µ
| ~B|2,

~S = ~E × ~H =
1

µ
~E × ~B.

(We also know from Problem Set 3 that µε~S gives us the momentum density.)
These are for a general EM field; what about the specific case of an EM plane
wave?

Let’s look at the energy density first: we know that, for an EM plane
wave, ~B = ~k × ~E/ω. Recall that |~a ×~b| is |~a||~b| times the sine of the angle

between the two vectors. But since ~k and ~E are perpendicular, | ~B| = k| ~E|/ω.
Thus,

u =
ε

2
| ~E|2 +

k2

2µω2
| ~E|2

= ε| ~E|2

since k/ω =
√
µε. Now, recall that we have the general form

~E = |Ex| cos (kz − ωt) êx + |Ey| cos (kz − ωt− δ) êy

and so

| ~E|2 = |Ex|2 cos2 (kz − ωt) + |Ey|2 cos2 (kz − ωt− δ) .

Thus, the energy density in its full time- and space-dependent form is

u(t, x, y, z) = ε |Ex|2 cos2 (kz − ωt) + ε |Ey|2 cos2 (kz − ωt− δ) .
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This is correct, but in many practical cases, unnecessary. Why? Well, con-
sider the frequencies that might show up in a typical EM wave. For example,
radio waves: as anyone with a tuner knows, AM radio frequencies are in the
tens or hundreds of kilohertz region and FM radio in the megahertz. And
these are on the low end of the EM spectrum: visible light has even higher
frequencies, and X-rays and gamma rays higher still. So most of the EM
radiation you encounter in both everyday life and much of physics tends to
oscillate at least 10000 times per second.

This means that, in general, we don’t see the oscillatory nature of the
wave, but rather its average value since it bounces all over the place so
quickly. So if we measured, say, u, the actual time the measurement takes
could be much longer than the period of oscillation of the wave, and thus the
value we’d get would be the time-averaged value

〈u〉(~r) =
1

T

∫ T

0

u(t, ~r) dt

where T is the period of the oscillation.
So maybe we better look at how we might compute such an average: if

we have only a single function,f(t), then we just compute the time-average

with the above formula. But note that u and ~S both are made out of the
product of two oscillating functions: the forms E2, B2 and EB all appear. So
suppose we have two functions f(t) and g(t) which oscillate with frequency
ω. Then we know there exist complex numbers f̃0 and g̃0 such that

f(t) = Re
[
f̃0e
−ı̇ωt
]
, g(t) = Re

[
g̃0e
−ı̇ωt]

If f̃0 = fR + ı̇fI and g̃0 = gr + ı̇gI , it’s easy to show that

f(t) = fR cosωt+ fI sinωt, g(t) = gR cosωt+ gI sinωt

and so

f(t)g(t) = = fRgR cos2 ωt+ fIgI sin2 ωt+ (fRgI + fIgR) sinωt cosωt.

The integral from 0 to T = 2π/ω of both cos2 ωt and sin2 ωt is T/2, and of
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sinωt cosωt is zero, so we see

〈f(t)g(t)〉 = =
fRgR + fIgI

2

=
1

2
Re [(fRgR + fIgI) + ı̇ (fIgR − fRgI)]

=
1

2
Re
[
f̃0g̃
∗
0

]
.

And that’s the idea: if we have two functions with the same frequency, then
the time average is just half the real part of the complex amplitude of one
times the conjugate of the complex amplitude of the other.

So we know that since u = ε| ~E|2, the time-average of this will require us
to compute E2

x. But we know that Ex = Re[Exeı̇(kz−ωt)], so Exeı̇kz is what’s
multiplying e−ı̇ωt, and thus from the above formula,〈

E2
x

〉
=

1

2
Re
[(
Exeı̇kz

) (
Exeı̇kz

)∗]
=

1

2
|Ex|2.

Therefore, since we’ll get a similar result for the averge of E2
y and Ez = 0,

〈u〉 = ε
〈
E2
x + E2

y + E2
z

〉
=

ε

2

(
|Ez|2 + |Ey|2

)
=

ε

2
~̃E0 · ~̃E∗0

=
ε

2
| ~̃E0|2

where we have now extended the idea of the norm of a vector to include
complex-valued vectors: |~a|2 is now defined to be ~a · ~a∗, not ~a · ~a.

So if we have the complex amplitude vector ~̃E0 – which we assume we do
– we can easily and immediately compute the time-averaged energy density.
Notice that it’s constant; it depends neither on time nor on position, so
the average energy of an EM plane wave is distributed uniformly thoughout
space.

Now, on to the energy current: the Poynting vector is ~S = ~E × ~B/µ, so
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for an EM plane wave, this gives

~S =
1

µ
~E ×

(
~k

ω
× ~E

)
=

1

µω

[
~k
(
~E · ~E

)
− ~E

(
~k · ~E

)]
=

~k

µω
| ~E|2.

Unsurprisingly, this points (poynts?) in the same direction as the wave is
propagating, so energy is being carried along with the wave.

But for the same reasons as discussed above, any measurement of this
vector is likely to return an average value, and so what we expect to get is

〈~S〉 =
~k

µω

〈
| ~E|2

〉
=

~k

2µω
| ~̃E0|2

for the same reasons as before. Again, the complex amplitude vector contains
all the info we need to get the average energy current of an EM plane wave.
Also, the average density of momentum is also obtained from this: 〈µε~S〉 =

ε~k| ~̃E0|2/2ω.

Now, ~S is the energy current density in much the same way that ~J is
the charge current density: if we have a small surface area element d~σ, the
dP = ~S · d~σ is the little bit of power – the rate of energy change – that flows
through it.

This is true in general, but now let’s specify to the case of an EM plane
wave hitting a surface. If we denote by dP̄ the average power flowing across
this surface (we could use d〈P 〉 or 〈dP 〉 to be consistent, but both just look
weird), then

dP̄ = 〈~S〉 · d~σ

=
| ~̃E0|2

2µω
~k · d~σ

=
k| ~̃E0|2

2µω
dσ cos θ
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where θ is the angle between the wave’s propagation vector and the surface’s
normal. Note that for a fixed area dσ, this depends only on the angle θ; thus,
it’s largest when θ = 0 and smallest when θ = π/2.

This explains the temperature variation during the seasons: around June
21st of each year, the Earth’s axis is tilted toward the Sun, and therefore the
northern hemisphere receives the light from the Sun more directly (smaller
θ, between −23.4◦ at the Equator to 66.6◦ at the North Pole) whereas the
southern hemisphere less so (from −23.4◦ to −90◦ at the Antarctic Circle),
and so it’s warm(ish) in Dublin and cool(ish) in Sydney. Half a year later,
around December 21st, the Earth’s axis tilts away from the Sun and the
situation reverses. You probably all knew that, but now we have the physics
and maths to explain it!
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