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1. Introduction

Broadly speaking there are three common states of matter: solid, liquid and gas,
though plasmas and other more exotic states can also be legitimately called different states
of matter. Thermodynamics studies all states of matter in general terms while fluid dy-
namics deals with properties specific to liquids and gases. Solid State physics describes
the properties of solids.

Examples of solids at room temperature are: rocks, metals (except mercury), ice, glass
and wood. This course will deal exclusively with one type of solid — crystals (rocks and
metals are made up of crystals, glass and wood are not crystals). The regular structure
of crystals makes it easier to construct realistic mathematical models of them, the cellular
structure of wood is much more complicated at a microscopic level than a crystal. While
this restriction to crystals may seem rather narrow it is in fact more general than one
might think: metals and rocks are in fact made up of an agglomeration of large numbers
of small crystals. While the crystal structure is obvious in some rocks, such as the sample
of Iron Pyrites shown below, it is not obvious in metals where the crystals are usually too
small to see without a microscope.

Some crystals can be very large, metres across like the ones shown here from a mine in
Mexico1

1 It has even been suggested by some geologists, based on analysis of seismic data and computer modelling of the

quantum mechanical properties of iron at high pressure, that the inner core of the Earth might be a single crystal of

iron more than 2400 km in size — but this is speculative.
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2. Lattices and crystals

A crystal is a periodic array of atoms or molecules in a regular lattice structure.
Mathematically a lattice is a rigid, periodic array of points that looks exactly the same
from every point and is infinite in extent. Putting an atom, a group of atoms or a molecule
(a basis) at every point of a lattice gives a crystal structure.

Crystal structure = Lattice + Basis.

Below is a two dimensional representation of this concept. The blue and green dots
represent atoms, e.g. Zn and S for a crystal of Zinc Sulphide. A lattice is an abstract
mathematical structure that is completely determined by a set of basis vectors, a1 and a2

below, which, when combined with the basis, gives a representation of a crystal,2

a 1

2a

a 1

2a

Lattice               +        Basis        =             Crystal Structure

A lattice is defined by a set of primitive lattice vectors, such as a1 and a2 in
the two dimensional example. The definition of a set of primitive lattice vectors is that
any lattice vector L can be expressed as a linear combination of primitive lattice vectors,
L = n1a1+n2a2, with integer co-efficients. Primitive lattice vectors describe a primitive
cell of the lattice, a parallelogram in this case,

2 Real crystals do not have infinite extent, of course, but even small crystals of a milligramme can have 1020 atoms

in them so it not unreasonable to model them with a lattice of infinite extent.
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a 1

2a

It may be useful to think of a two-dimensional lattice as a tiling of the two-dimensional
plane by primitive cells. A primitive cell need not be a parallelogram. By definition a
primitive cell contains one complete lattice point and only one complete lattice point.

A general point in a two dimensional lattice is described by a lattice vector

L = n1a1 + n2a2

defined by two integers n1 and n2.
Primitive lattice vectors and primitive cells are not unique, the pairs (a1,a2), (a

′
1,a

′
2)

and (a′′
1 ,a

′′
2) in the figure below are all primitive lattice vectors and the green shapes are

all possible primitive cells,

2a

a1 a’’1

2a’’a’1

2a’

The three green shapes in the figure above all have the same area,

|a1 × a2| = |a′
1 × a

′
2| = |a′′

1 × a
′′
2 |.

A three-dimensional lattice is described by three primitive lattice vectors (a1,a2,a3),
lattice vectors are defined by three integers, n1, n2 and n3,

L = n1a1 + n2a2 + n3a3,

and all primitive three dimensional cells have the same volume

Vc = |a1.(a2 × a3)|.

Symmetries

The set of all possible lattices can be classified by their symmetries:
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• All lattices are symmetric under translations by any lattice vector (all lattice points
move under such a translation);

• Symmetries leaving at least one lattice point fixed are called point symmetries— the
set of all point symmetries is called the point group of the lattice. Point symmetries
are: rotations about a lattice point; reflections in lines or planes containing a lattice
point and inversion about a lattice point (any given lattice might not have all of these
symmetries).

• The combination of all lattice translations and the point group of the lattice is called
the space group of the lattice.

As an example in 2-dimensions, consider the pattern below and imagine it to be
infinitely extended in both directions:

When extended this rectangular pattern is symmetric under rotations through π about
any point and, of course, rotations though 2π which just brings the pattern back to its
original orientation. The pattern is also symmetric under reflections about any of the
marked horizontal lines, we shall represent such reflections by the symbol M1 (M for
mirror), and reflections about any of the vertical lines, which we shall represent by M2.
The rotations leave precisely one point fixed while the reflections leave an entire line of
points fixed, these operations are part of the point group. Combining any two symmetry
operations that leave the same point fixed should also be a symmetry of the point group:
for example we could perform M1 followed by a rotation through π, this does not give a
new symmetry operation because it is completely equivalent to M2 (convince yourself of
this).

To understand the point group in more detail it is useful to draw up a table that shows
the result of combining any two symmetry operations, this is called a group multiplication

table. Denote a clockwise rotation though an angle θ by θ itself and the result of doing
nothing at all (or rotating through 2π) by 1 then the table below shows the result obtained
by first applying the operation in the top row and then applying the operation in the first
column. We get a 4× 4 table because we must include 1 in order to complete the table.
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1 π M1 M2

1 1 π M1 M2

π π 1 M2 M1

M1 M1 M2 1 π

M2 M2 M1 π 1

Note that any symmetry multiplied by 1 just reproduces the symmetry itself, so 1
is called the identity operation. Also each row and each column contains a 1, any two
operations that combine to produce a 1 are called inverses of each other and every entry
has an inverse. The requirement that applying any two symmetry operation must produce
another symmetry and that every operation has an inverse in the multiplication table
puts very strong restrictions on the number of consistent multiplication tables that can
be constructed. All possible point groups have a finite number of elements and have been
classified and listed by mathematicians.

Space groups have a (countably) infinite number of elements, because there are an
infinite number of lattice vectors available for translations, but nevertheless all possible
space groups can also be classified and listed. This means that all possible lattice structures
can be classified and in three dimensions this was first achieved by the French physicist
Bravais in 1850. For this reason these lattices are called Bravais lattices. Sometimes there
is more than one space group with the same point group as we shall see below.

Two dimensional lattices

For simplicity we start with two dimensional lattices. In two dimensions there are
4 possible point groups (giving rise to 4 lattice systems) and 5 possible space groups
(giving rise to 5 inequivalent lattices). The possibilities are shown below (lattice points
are indicated by blue dots for clarity):
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α = π/2,π/3;

a = b

α
a

a2a

a1

a1

2a

2a

a 1

2a

a1

2a

a=b

α = π/2;
a = b

α=π/3

a

a

Hexagonal

π/3

<=>

Rhombic      =      Centred RectangularRectangular

a
b

α
a

b

Oblique
a = bα = π/2,π/3;

Square

a

a a 1

2d BRAVAIS LATTICES

4 Lattice Systems; 5 Bravais Lattices

In two dimensions the only possible point symmetries are:
i) Rotations by π

3 ,
π
2 and multiples of these, namely 2π

3 , π, 4π
3 , 3π

2 and 5π
3 .

ii) Reflection in a line.
All two-dimensional lattices have rotations by π as part of their space group, the

complete set of possibilities is:

4 lattice systems
(point groups)





π only Oblique

π + reflections

{
Rectangular
Centred Rectangular

multiples of π2 + reflections Square
multiples of π3 + reflections Hexagonal





5 Bravais lattices.

Although the rectangular and centred rectangular lattices share the same point group
they are different because they have different space groups, as can be seen by combining
reflections with translations. If M1 represents reflection in the x-axis and M2 reflection in
the y-axis then, for the rectangular lattice

M1 :
{
a1 → a1

a2 → −a2
M2 :

{
a1 → −a1

a2 → a2,

while, for the centred rectangular lattice

M1 :
{
a1 → a2

a2 → a1
M2 :

{
a1 → −a2

a2 → −a1.
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x

y

a

a
a

a

2

1

2

1

Rectangular Centred Rectangular

Thus M1 interchanges a1 and a2 for the centred rectangular lattice, and this is a
symmetry. There is no such symmetry for a general rectangular lattice, unless a1 and a2

have the same length in which case the a lattice is square and has a different space group
with more rotational symmetries.

Note that rotations by 2π
5 is not a possibility — it is not possible to tile a two dimen-

sional plane with a single shape with 5-fold symmetry, the figure below shows the kind of
thing that goes wrong if we try to do so,

π/5

Curiously it is possible to tile the two dimensional plane with a 5-fold symmetric pat-
tern (point group consisting of rotations by 2π

5
) but which has no translational symmetries

at all: the pattern never repeats, and so does not fall into the category of crystals by
our definition. This pattern requires two different rhombic tiles for its construction and is
called a Penrose tiling,
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Structures similar to this have been seen in Nature, they are called quasi-crystals, but we
shall not be describing these any further in this course.

Before going on to describe the classification of three-dimensional lattices we first
describe the construction of a special primitive cell, called a Wigner-Seitz cell. To
construct a Wigner-Seitz cell first pick any lattice point and draw lines connecting it to all
its neighbours. Bisect these lines at right-angles and the bisectors enclose a Wigner-Seitz
cell.

In the figure above solid black lines enclose primitive cells, the parallelograms described
earlier, and dotted black lines link other neighbours to the chosen lattice point, at the centre
of the green shape. Red lines represent perpendicular bisectors of all the black lines, both
solid and dashed. The red lines enclose the six-sided green shape, which is a Wigner-Seitz
cell for this lattice — it has the same area as one of the parallelograms.
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Three dimensional lattices

In three dimensions the only possible allowed rotations of a crystal are the same set
as in 2-dimensions, but around any one of three axes. There can be up to three reflection
planes and inversion in an origin corresponds to a reflection plus a rotation of π radians
(in 2-dimensions reflection in the origin is completely equivalent to a rotation through π).

There are 7 possible point groups in 3-dimensions, giving different 7 lattice systems,
with 14 different space groups and hence 14 inequivalent Bravais lattices:

;

Hexagonal
b

a

a

α = π/3; β = γ = π/2

α,β,γ = π/2 ; a = b = c

aγ

c

b

β
α

Triclinic

α

a
a

a

α

α

Rhombohedral

a = b = c

α = β = γ = π/2

a = c = b

β = γ = π/2

α = π/3

β = γ = π/2; α = π/2

a = b = c

a

b

c

Orthorhombic
α = β = γ = π/2;

a = b = c

c = a

a = b = c

α = β = π/2

3d BRAVAIS LATTICES

7 Lattice Systems; 14 Bravais Lattices

a
b

c

α α

α

Monoclinic

a = b = c

a

a

a

Cubic α = β = γ = π/2; a = b = c

a

a

c

Tetragonal α = β = γ = π/2;

c = a; c = a/  2

α = β = γ = π/2
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We shall consider four of the simpler cases in more detail. Firstly the three cubic
lattices all have space groups which are the symmetries of a cube, which include rotations,

Including the identity gives 24 proper (chiral) operations; 

Including inversion gives 24 achiral operations = 48 in total.

6x1=6

π

Inversion

π/2, π,      3π/2 2π/3, 4π/3

Symmetries of a cube (Octahedral group)

3x3=9 4x2=8

and reflections in various planes,
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Examples of mirror (achiral) symmetries of a cube, reflection in a plane

1. Simple cubic lattice

For the simple cubic lattice we can choose primitive lattice vectors to be

a1 = ax̂, a2 = aŷ, a3 = aẑ.
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The volume of a primitive cell is

Vc = |a1.(a2 × a3)| = a3.

x

z y

a
1

a 2

a
3 a

a

Examples of materials that crystallise in simple cubic form are Nitrogen (at 20◦ K),
Caesium Chloride (CsCl with a = 0.411Å) and the mineral Perovskite (CaTiO3 with
a = 2.94Å). 3

Cl

Cs

Ceasium Chloride

Ca

Ti

O

Perovskite

There is one full Caesium atom in each primitive cell of a CsCl crystal, there are eight blue
dots at the vertices of the cube, but only one-eighth of each dot is inside the primitive cell.
Similarly there are six red dots on the faces of the cube for CaTiO3 but only half of each
dot is inside the cube, so there are three Oxygen atoms in each primitive cell.

Note that CsCl and CaTiO3 have different crystal structures, but the same lattice
structures — their bases are different.

3 The Perovskite structure is an important ingredient in geology: it is believed that the lower part of the Earth’s

mantle, between 700 and 2,500 km down, could be more than 90% brigmanite — Magnesium Silicate (MgSiO3) with

the Perovskite structure — which is probably the most common mineral on Earth.

10



2. Body centred cubic

Putting an extra lattice point at the centre of every primitive cell of a simple cubic
lattice gives a distinct lattice structure called body centred cubic. A body centred cubic
lattice can be viewed as two interwoven simple cubic lattices, as shown on the right below.

a

a

1

3a

2

a

a

The picture on the left above is not a primitive cell, it contains two lattice points, but
is still a useful way of visualising a body centred cubic lattice — it is called a conventional
cell. A set of primitive lattice vectors is shown above,

a1 = ax̂, a2 = aŷ, a3 =
a

2
(x̂+ ŷ + ẑ).

The volume of a primitive cell is

Vc = |a1.(a2 × a3)| =
a3

2
.

An alternative set, which is more symmetric, is

a
′
1 =

a

2
(−x̂+ ŷ + ẑ) a

′
2 =

a

2
(x̂− ŷ + ẑ) a

′
3 =

a

2
(x̂+ ŷ − ẑ),

with has the same volume,

Vc = |a′
1.(a

′
2 × a

′
3)| =

a3

2
,

as it must do if it is to be a primitive cell.
Examples of materials that crystallise in body centred form are iron, Fe, potassium,

K, and Sodium, Na.

Fe

Iron

Water ice forms hexagonal crystals at atmospheric pressure and freezing temperature
(0◦C) but at high pressure (2.3 GPa, about 23,000 times atmospheric pressure at sea level)
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water ice forms at room temperature and takes a body centered cubic structure, known as
hot ice (technically ice VII, water has a very rich phase structure in solid form and there
are at least 19 different forms of ice4).

Note that CsCl is not a body centred lattice: the Cl atom at the centre of the cell
is different to the Ce atoms at the vertices, so the central point is not equivalent to the
vertices — it is not a lattice point. Do not confuse the lattice structure of CsCl with that
of Iron — they are different.

The Wigner-Seitz cell for a body centred cubic lattice is a truncated octahedron:

Primitive Cell

Wigner−Seitz Cell

Conventional Cell

BCC Lattice Cell

���
���
���

���
���
���

3. Face centred cubic

Putting an extra lattice point at the centre of the faces of a primitive cell of a simple
cubic lattice gives another distinct lattice structure called face centred cubic. A face
centred cubic lattice can be viewed as four interwoven simple cubic lattices.

4 With apologies to Kurt Vonnegut ice IX takes a tetragonal phase which is only stable below 140 K and pressures

between 200 MPa and 400 MPa.
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a’
2

a’
1

3a’

a

a

The picture above is not a primitive cell because it contains four lattice points, it is a
conventional cell of the face centred lattice. A set of primitive lattice vectors, as shown
above, is

a
′
1 =

a

2
(ŷ + ẑ) a

′
2 =

a

2
(x̂+ ẑ) a

′
3 =

a

2
(x̂+ ŷ),

The volume of a primitive cell is

Vc = |a1.(a2 × a3)| =
a3

4
,

where a is the size of a conventional cell.

Examples of metals that crystallise in face centred form are aluminium, gold and lead,
with bases consisting of a single atom at every lattice site.

Au

Salt, NaCl, is face centred, with a = 3.56Å, it is not simple cubic!

Cl

Na

Diamond has a face centred structure with a basis consisting of two carbon atoms,
one at the origin (front-bottom-left corner) and one at a

4
(x̂+ ŷ+ ẑ), and a identical pair at

all lattice sites of course. This structure allows each carbon to be linked to its four nearest
neighbours, each a distance

√
3a
4

away, by covalent bonds. Si, Ge and Sn have the same
structure as diamond.
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C

Zinc sulphide, ZnS, has a similar structure, except the base pair is ZnS rather than
two identical carbon atoms,

Zn

S

Carbon 60 (buckyballs) has also been found to crystallise in face centred cubic form
— in this case the basis consists of sixty carbon atoms!

The Wigner-Seitz cell for a face centred cubic lattice is a truncated rhombic dodeca-
hedron:
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FCC Lattice Cell

Conventional Cell

Primitive CellWigner−Seitz Cell

���
���
���

���
���
���
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4. Hexagonal close packed structure

Strictly speaking this is not a Bravais lattice, but it is nevertheless a useful structure
to consider as it not infrequently occurs in Nature, eg. Mg, Ti, Zn. The hexagonal
close packed structure consists of two interwoven 3-dimensional hexagonal lattices and,
like diamond, it is really a Bravais lattice (3-d hexagonal) with a basis consisting of two
identical atoms. It is constructed by stacking 2-dimesnional hexagonal lattices on top of
each other in the sequence ABAB... as shown in the upper figure below:

2 a

C

C

C

C

C

C

ABCABC...

ABABA....

a

array of spheres, radii a/2

C C CC

C C C

B
A

BB

B B

AAA

A A A

AAAA

A

A

A

B

B
2nd layer at B

3rd layer at A

a

a2

1 a

2−d hexagonal lattice

AA

A A

AA

A

A

A

A

A

A

AA

B

B

B

B

B

B

A

B

B

B

B

B

BA

c

A

AA

Hexagonal Close Packed Structure

For optimal close packing with identical spheres c =
√

8
3a. Magnesium for example

crystallises in a hexagonal close packed structure with a = 3.21Å and c = 5.21Å, giving
c
a
= 1.62.

Different sequences of stacking hexagonal lattices give different structures. For exam-
ple, as shown in the lower picture above, ABCABC... is equivalent to face centred cubic.
Other sequences are possible, e.g ABACABAC... for some rare earth metals.
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Filling fractions

Solids have higher densities than liquids or gases, because their atoms are closely
packed. For example we can calculate the fraction of space filled by a spherical monatomic
basis in a simple cubic crystal. For a cell size a the basis atoms just touch if their radius
is a

2
.

}a
a/2

Each primitive cell has a volume Vc = a3 and contains one complete sphere with

volume 4π
3

(
a
2

)3
= π

6
a3, so the fraction of space that is filled by solid spheres of radius a

2
,

the packing fraction is
VSphere
Vc

=
π

6
= 0.524...

For some other structures the packing fractions are:

FCC :

√
2π

6
= 0.740...

BCC :

√
3π

8
= 0.68...

Diamond :

√
3π

16
= 0.34...

(the first two are for a monatomic spherical basis).
We finish this section with a couple of observations. First, note that the decomposition

Crystal = Lattice + Basis is not necessarily unique. For example a body centred cubic
lattice with a single monatomic basis (e.g. iron) is identical to a simple cubic lattice with a
basis consisting of two identical atoms, one at the origin and one at the centre, a2 (x̂+ŷ+ẑ),
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In the same vein a simple cubic lattice with a monatomic basis is the same as a face
centred cubic lattice with a diatomic basis consisting of two identical atoms, one at one
corner of a conventional cell and one in the centre.

Secondly we observe that, once the basis is included, the symmetry of the crystal
might be smaller than that of the lattice. The list of possible crystal point groups and
space groups is larger than those of lattices:

Lattices: 7 point groups; 14 space groups
Crystals: 32 point groups; 230 space groups

We shall not list all possible crystal space groups here. In four dimensions there are
52 Bravais lattices (different lattice space groups).

3. Reciprocal Lattices

Bragg Law

Experimentally crystal structure can be determined by diffraction experiments. Typ-
ical atomic separations in a crystal are of the order of 1Å= 10−10 m so we need wavelengths
of this order to resolve the structure. For electromagnetic radiation this corresponds to X-
rays, though we can also use electrons or neutrons whose de Broglie wavelength is λ ≈ 1Å.

For concreteness let’s consider X-rays reflecting off 2-dimensional planes in a crystal.
Generically the X-rays experience partial reflection — part of the wave is transmitted and
the remainder reflected. The reflected wave can experience interference between lattice
planes, either constructive or destructive depending on the angle of incidence. In the
figure below there is constructive interference when the path difference between the two
waves shown is an integral multiple N of the wavelength,

d sin θ
d

θ

θθ
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There is constructive interference when

2d sin θ = Nλ. (1)

This is known as Bragg’s Law. Since N is an integer only some specific angles, given
by sin θ = Nλ

2d , will give strong reflection — angles of incidence that do not satisfy this
criterion for any integer N will tend to be transmitted rather than reflected. There will
be peaks in intensity, Bragg peaks, for special directions such that angle θ satisfies (1)
— other directions will receive no scattered X-rays. Bragg peaks manifest themselves
as bright spots as seen in this X-ray diffraction pattern for a crystal of Alum (hydrated
potassium aluminium sulfate, KAl (SO4)2.12H2O).

This simple derivation of the Bragg law assumes that X-rays scatter off smooth 2-
dimensional planes, like partially transparent mirrors, but in reality they scatter off the
electrons in atoms which are localised near points in the plane. To make further progress
we need a more realistic mathematical model of the diffraction process. First we define a
lattice plane.

Lattice planes and Miller indices

A lattice plane is a two-dimensional plane passing through any three non-colinear
points of a three-dimensional lattice. Due to periodicity of the original lattice a lattice
plane always contains an infinite number of points. A lattice plane is in fact always one of
the five two-dimensional Bravais lattices.
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For example consider an orthorhombic lattice with primitive lattice vectors a1 = a x̂,
a2 = b ŷ and a3 = c ẑ. A general lattice point can be represented by the lattice vector

L = n1a1 + n2a2 + n3a3 = n1a x̂+ n2b ŷ+ n3c ẑ,

with n1, n2 and n3 three integers. So L has Cartesian co-ordinates x = n1a, y = n2b and
z = n3c.

A linear relation between x, y and z defines a plane, e.g.

h

a
x+

k

b
y +

l

c
z = p, (2)

with h, k, l and p fixed constants. If we allow p to vary, equation (2) defines a family of
parallel planes. So, if (x, y, z) is a lattice point, the constraint

hn1 + kn2 + ln3 = p (3)

defines a family of parallel planes, one for each value of p (the plane with p = 0 contains
the origin). To describe this family of parallel planes it is sufficient to consider p = 0, since
we can always choose the origin to lie in any given lattice plane. So we need only consider

hn1 + kn2 + ln3 = 0. (4)

For an infinite number of solutions to this equation, (n1, n2, n3), which are not co-linear,
h, k and l must be rational numbers, and we can always multiply (4) by the least common
multiple of their denominators to make them integers — so we can choose h, k and l to
be integers without any loss of generality. The smallest three integers (h, k, l) that define
a family of parallel lattice planes are called Miller indices.

Note:

i) If a lattice plane is parallel to one of the primitive lattice vectors then the correspond-
ing co-efficient in (3) is infinity and the Miller index is 0.

ii) When there is no possibility of confusion, commas are omitted from the triple (h, k, l)
and (hkl) denotes either a single lattice plane or the set of equally spaced parallel
planes, one for each value of p.

iii) By convention the Miller indices associated with a negative co-efficient in (3) is indi-
cated with a bar above it, e.g. (hkl̄).

iv) Another convention is that square brackets, [hkl], denotes the direction normal to the
plane (hkl). For simple cubic lattices [hkl] is in the same direction as some lattice
vector L, but this is not the case for all of the Bravais lattices.
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Examples of Miller indices for lattice planes in a simple cubic lattice

Reciprocal Lattice

The above simple derivation of Bragg’s law ignores the periodic structure of the lattice
planes and we have to be more sophisticated in order to understand fully the kind of X-
ray diffraction pattern shown above. X-rays scatter elastically off electrons in the atoms
that make up the crystal. Denote the density of electrons at a point r by ρ(r) (with
dimensions of 1/length3). Since the crystal is periodic ρ(r) should be a periodic function,
ρ(r + L) = ρ(r) for any lattice vector L. Since ρ(r) is periodic we can write it as a
three-dimensional Fourier series.

As a warm-up exercise, first consider the simple case of a one dimensional monatomic
lattice, i.e. a line of periodically spaced atoms, each a distance a from its nearest neighbours
on either side, so the one dimensional electron density is a periodic function of its argument
x,

ρ(x) = ρ(x+ a).

Periodic functions can be expanded as a Fourier series

ρ(x) = ρ0 +

∞∑

m=1

Am cos

(
2πmx

a

)
+

∞∑

m=1

Bm sin

(
2πmx

a

)
.

ρ0 =
1

a

∫ a

0

ρ(x)dx

is just the average density over a single period and the co-efficients Am and Bm can be
calculated from ρ(x) in the standard way

Am =
2

a

∫ a

0

cos

(
2πmx

a

)
ρ(x)dx
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Bm =
2

a

∫ a

0

sin

(
2πmx

a

)
ρ(x)dx.

It will be convenient to re-express the Fourier series as a sum of complex exponentials,

ρ(x) =

∞∑

m=−∞
ρme

2πimx
a ,

where the Fourier co-efficients Am = ρm + ρ−m and Bm = i(ρm − ρ−m) for m ≥ 1 are
real numbers. The Fourier co-efficients in exponential form, ρm and ρ−m, are complex in
general but must satisfy ρ∗m = ρ−m since ρ(x) is real. In fact ρm = 1

2
Am + 1

2i
Bm and

ρ−m = 1
2Am − 1

2iBm for m ≥ 1. The co-efficients ρm are obtained from

ρm =
1

a

∫ a

0

ρ(x)e−
2πimx

a dx

for all integral m.
We seek a similar decomposition for all of the three dimensional Bravais lattices.

Consider first a simple cubic lattice, with lattice spacing a. This is very like three copies
of the one dimensional lattice and we can write

ρ(r) =

∞∑

m1=−∞

∞∑

m2=−∞

∞∑

m3=−∞
ρm1,m2,m3

e
2πim1x

a e
2πim2y

a e
2πim3z

a (5)

The only subtlety is that this cannot be written as

( ∞∑

m1=−∞
ρm1

e
2πim1x

a

)( ∞∑

m2=−∞
ρm2

e
2πim2y

a

)( ∞∑

m3=−∞
ρm3

e
2πim3z

a

)

because there is no reason to assume that ρm1,m2,m3
can be factorised into ρm1

ρm2
ρm3

,
and in general it cannot. Equation (5) can be written more compactly as

ρ(r) =
∑

{m1,m2,m3}
ρm1,m2,m3

e
2πim.r

a =
∑

G

ρGe
iG.r

where r = xx̂+ yŷ + zẑ,

G =
2π

a

(
m1x̂+m2ŷ +m3ẑ

)
,

and the sum means the sum over all integer triples (m1, m2, m3).
We can write a similar decomposition for ρ(r) for any three dimensional Bravais lattice

ρ(r) =
∑

G

ρGe
iG.r, (6)
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where ρG are independent of r and the sum is over all vectors G for which

ρ(r) = ρ(r+ L) ⇒
∑

G

ρGe
iG.r =

∑

G

ρGe
iG.(r+L) (7)

for any lattice vector L.
As for one-dimensional Fourier transforms the Fourier co-efficients ρG are derivable

from the original electron density function ρ(r)

ρG =
1

Vc

∫

Primitive
Cell

ρ(r)e−iG.rdV.

The set of all allowed G’s satisfying (7) can be found as follows: define three vectors
b1, b2 and b3 in terms of primitive lattice vectors a1, a2 and a3

b1 = 2π
a2 × a3

a1.(a2 × a3)
, b2 = 2π

a3 × a1

a1.(a2 × a3)
, and b3 = 2π

a1 × a2

a1.(a2 × a3)
. (8)

With this definition it is automatic that

bi.aj = 2πδij

where δij is the Kronecker δ, equal to 1 if i = j and zero otherwise. Then, for any three
integers m1, m2 and m3,

G = m1b1 +m2b2 +m3b3 (9)

satisfies
eiG.L = e2πi(n1m1+n2m2+n3m3) = 1 (10)

for any lattice vector L = n1a1 + n2a2 + n3a3, so (7) is automatic.
The set of all vectors G satisfying (9) itself constitutes a lattice, called the reciprocal

lattice, with primitive lattice vectors b1, b2, b3.
For a 2-dimensional lattice, just set a3 = ẑ and use

b1 =
2π(a2 × ẑ)

|a1 × a2|
, b2 = −2π(a1 × ẑ)

|a1 × a2|
.

Examples:
i) Simple Cubic: primitive lattice vectors,

a1 = ax̂, a2 = aŷ, a3 = aẑ;

the reciprocal lattice has primitive lattice vectors

b1 =
2π

a
x̂, b2 =

2π

a
ŷ, b3 =

2π

a
ẑ.
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It is a simple cubic lattice with lattice spacing 2π
a .

ii) FCC: conventional cell size a, primitive cell volume Vc =
a3

4 ,

a1 =
a

2
(ŷ + ẑ), b1 =

2π

(a3/4)

(a
2

)2 (
(x̂× ŷ) + (ẑ× x̂) + (ẑ× ŷ)

)
=

2π

a
(−x̂+ ŷ + ẑ);

a2 =
a

2
(ẑ+ x̂), b2 =

2π

a
(x̂− ŷ + ẑ);

a3 =
a

2
(x̂+ ŷ), b3 =

2π

a
(x̂+ ŷ − ẑ).

The reciprocal lattice is body centred cubic, with conventional cell lattice spacing 4π
a
.

iii) BCC: with conventional cell size a the reciprocal lattice is face centred cubic with
conventional cell size 4π

a (the proof is left as an exercise).

When necessary the original lattice will be referred to as the direct lattice, to distinguish
it from the reciprocal lattice.

Suppose we have a family of lattice planes, (hkl), with minimal separation dhkl. If L

is a lattice vector in one plane and L̃ a lattice vector in another plane, a distance s dkhl
away from the first (with s any positive integer), then

(L− L̃).n̂ = sdhkl

where n̂ is a unit normal to the planes.

n̂

L
~

L
~

L−

O

}sd
hkl

L

This implies that

e
2πi
dhkl

n̂.(L−L̃)
= e2πis = 1
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for all L− L̃ (by varying s, L and L̃ this will include all direct lattice vectors). From the
definition (10) this in turn implies that G = 2π

dhkl
n̂ is a reciprocal lattice vector. It is in

fact the shortest reciprocal lattice vector that is normal to the (hkl) planes, hence

Ghkl =
2π

dhkl
n̂

has length 2π
dhkl

, where dhkl is the distance between neighboring planes among the (hkl)
set of planes.

Von Laue condition

We can now derive a more powerful version of the Bragg condition, called the Von Laue
condition, which takes into account the fact that lattice planes are collections of lattice
points. Consider a beam of X-rays scattering elastically off identical atoms sitting at two
lattice points separated by a lattice vector L. Elastic scattering means that the energy,
and hence wavelength λ, of the X-rays does not change, only their direction changes. If
the incoming beam has wavevector k = |k|k̂ in the k̂ direction and the outgoing beam

has k′ = |k|′k̂′ in the k̂′ direction then |k| = |k′| = 2π
λ (k̂ and k̂′ are unit vectors in the

directions k and k′).

φ’

k

k’

L
φ

φ

φ = ^

= − ^

L.k’

L.k

Lcos

Lcos   ’

From the diagram above the path difference between two X-rays scattering off the two
atoms is L.(k̂′ − k̂). Constructive interference requires

L.(k̂′ − k̂) = Nλ

where N is an integer. Hence
L.(k′ − k) = 2πN,

since k = k′ = 2π
λ . There will be a huge enhancement in the intensity of the scattered

wave if this is true for all lattice vectors L, that is if

eiL.(k−k′) = 1 (11)
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for all L, which is equivalent to the statement that

G = k− k′

is a reciprocal lattice vector, (10). From this follows

−k′ = G− k ⇒ |k′|2 = G2 − 2G.k+ |k|2,

giving

G2 = 2G.k (12)

since |k′|2 = |k|2. This is the von Laue condition, a scattered X-ray will show a peak
in intensity if the incoming wavevector k satisfies this condition for some reciprocal lattice
vector G.

This is related to the Bragg condition (1) as follows. Since G is a reciprocal lattice
vector and it is an integral multiple, G = NGhkl, of some shortest reciprocal lattice vector,
Ghkl, for three integers h, k and l. If (hkl) have no common divisor5 then Ghkl =

2π
dhkl

n̂

has magnitude |Ghkl| = 2π
dhkl

where dhkl is the distance between neighbouring (hkl) lattice
planes. The von Laue condition is

|G|
2

= Ĝ.k = |k| sin θ

where the angle θ is defined in the figure below,

O
k’k

G

k

G/2

θ

G|   |/2

Hence

|G|
2

=
πN

dhkl
= |k| sin θ = 2π

λ
sin θ ⇒ 2dhkl sin θ = Nλ,

which is the Bragg condition (1) with d = dhkl.

5 The k in (hkl) here is an integer describing reciprocal lattice planes, not the wave number of the incoming X-ray!
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From the figure above it can be seen that the maximum intensity in the scattered ray
is achieved when the tip of the wavevector k lies in a plane which is the perpendicular
bisector of a reciprocal lattice vector G = NGhkl for some (hkl) — this called the Bragg
plane for the incoming wave. Most k will not lie in a Bragg plane and so will not give
peak intensity for the scattered wave.

Ewald construction

A neat way of visualising the von Laue condition is the Ewald construction. Choose
an origin O at a point in the reciprocal lattice and place the tail of k at O. Draw a circle
of radius |k| centred on the tip of k, so it passes through the tail of k. k will generate
a Bragg peak if and only if another reciprocal lattice point G (other than O) lies on the
circle.

G

O

k

k’

Three common methods of observing diffraction peaks are:

1) Laue method: fix the direction of k relative to the crystal and allow |k| to vary
(i.e. vary the wave-length), effectively thickening the circle in the Ewald construction
above so that it encompasses some G

2) rotating crystal method: fix k and rotate the crystal, equivalent to rotating the
lattice points in the Ewald construction about the origin.

3) powder method: use a powder consisting of many small crystals, in random orien-
tations, with k fixed. There will always be some small crystals with the lattice in the
correct orientation to give a peak.

The Ewald construction makes it clear that if |k| is less than the reciprocal lattice spacing
there will be no Bragg peaks, i.e. the wavelength is too long. If |k| is very large compared
to the reciprocal lattice spacing, i.e. very short wave-lengths, there will be very many such
G’s and very many allowed directions k′, when this happens the Bragg peaks wash out and
the pattern is lost. A clear pattern is only seen if |k| is larger than the reciprocal lattice
spacing, but not too large, corresponding to wavelengths of the order of the direct lattice
spacing which, for most crystals, is of the order of an Å. For electromagnetic radiation this
corresponds to X-rays, but electrons or neutrons with velocities momenta corresponding
to de Broglie wavelengths of a few Å can also be used.

Below is the X-ray diffraction pattern for diamond, taken using the von Laue method.
Note the 4-fold symmetry which reflects the underlying cubic structure of diamond:
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Brillouin zones

AWigner-Seitz cell of the reciprocal lattice is called aBrillouin zone. Brillouin zones
are another very useful way of understanding how X-ray diffraction patterns can arise —
they will also play a central rôle in understanding crystal vibrations and the movement of
electrons through crystals to be studied later. For a one-dimensional lattice for example,
with lattice spacing a, the reciprocal lattice has lattice spacing 2π

a and the region between
−π
a
and π

a
is a Brillouin zone.

2   /aπ

Brillouin
Zone

In two or three dimensions the von Laue condition requires that the tip of k, the
wavevector of the incoming X-ray, lie on a plane which is the perpendicular bisector of a
reciprocal lattice vector G. Consider first a 2-dimensional square lattice, with primitive
lattice vectors a1 = ax̂ and a2 = aŷ. The reciprocal lattice is also square, with primitive
lattice vectors b1 = 2π

a x̂ and b2 = 2π
a ŷ and reciprocal lattice vectors have the form

G = m1b1 + m2b2, with m1 and m2 integers. In the figure below the blue square is
bounded by four red lines, each is a perpendicular bisector of a reciprocal lattice vector.
The four lattice vectors that are used to construct the blue square are ±b1 and ±b2

(m1 = ±1, m2 = ±1). The blue square is a Wigner-Seitz cell for the reciprocal lattice and
is called the first Brillouin zone. An incoming X-ray whose wavevector k has its tail
on the central reciprocal lattice point and its head anywhere on the boundary of the blue
square will generate a Bragg peak.

28



3 42 thrdndst1

Brillouin Zones

Brillouin Zones for Square Lattice

Reciprocal lattice vector

Bisector 

 

The yellow triangles are bounded on the outside by perpendicular bisectors of the four
reciprocal lattice vectors

G = b1 + b2, G = b1 − b2, G = −b1 + b2, G = −b1 − b2,

and on the inside by the first Brillouin zone, the blue square. They can be pieced together
to make a yellow square which is also a Wigner-Seitz cell of the reciprocal lattice, identical
in size and shape to the first Brillouin zone. This cell is called the second Brillouin
zone. An incoming X-ray whose wavevector k has its tail on the central reciprocal lattice
point and its head anywhere on the boundary of the yellow triangles will generate a Bragg
peak.

The green triangles can be pieced together to make a square identical to the blue
one — this is the third Brillouin zone (can you work out which reciprocal vectors are
bisected by the red boundaries?). The pink shapes constitute the fourth Brillouin zone,
and so on.

Blue arrows in the figure below give examples of k-directions that generate Bragg
peaks from the boundary of the first Brillouin zone. The tip if the wavevector is rotated to
give the blue circle, only the specific directions where this circle intersects the boundary of
a Brillouin zone (red lines) corresponds to an incident direction that gives a Bragg peak.
The reflected waves k′ are shown in a lighter blue and, for clarity, they have been extended
by dotted blue arrows and labelled by the Miller indices of the reciprocal vector that is
bisected by the relevant red line.
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Bragg peak directions for square lattice

k

 

for fixed |   | extending into 2nd Brillouin zone

 

 

(01)

(10)

(01)

(hk)

Miller indices of G

(10)

kk’

(hk)

(10)(10)

(10)

(01)

(10)

(01)

(01)

(01)

Shorter wavelengths (longer k) can scatter off more Brillouin zones: the following figure
shows incident directions that give Bragg peaks by scattering off second and even third
Brillouin zone boundaries. The second figure below shows the direction of the outgoing
(scattered) wave for the same length of k.
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Bragg peak k−directions for square lattice

 

 

(hk)

Miller indices of G

(extended

for clarity)

(01)

k

(10)
(11)(11)

(11)

(11) (11)

(11)(11) (10)

(01)

(10)

(10)

(11)

(01)(01)
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Bragg peak k’−directions for square lattice

 

 

(11)

(11)

(10)(11)

(10)

(11)

(01)

(11)

(11)

(01)

Miller indices of (hk) G

(11)

(11)

(10)

(10)

(01)(01)

k’

In summary, a Bragg peak is present if and only if the tip of k lies on the boundary
of a Brillouin zone in the above construction.
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Structure factors

So far we have assumed that lattice sites, and only lattice sites, act as point scatterers.
Representing the scattered wave by a complex number (the physical wave is the real part)
each lattice site L contributes ei(k−k′).L to the scattered wave, so the total scattered
amplitude is proportional to6

∑
L e

i(k−k′).L. If k − k′ = G is a reciprocal lattice vector

then ei(k−k′).L = 1 for every lattice site and every term in the sum adds coherently. If
k − k′ is not a reciprocal lattice vector every term in the sum has a different phase and
they combine destructively to give a total of zero.

For a crystal with anything other that a monatomic basis the true story is a little more
complicated. Electromagnetic waves scatter predominantly off electrons (electrons react
to an incoming wave much more readily than positive ion cores, as they are much lighter
and more responsive). Denote the electron density ρ(r) then, in general, the scattered
amplitude is proportional to

F (k− k′) :=
∫
dV ρ(r)ei(k−k′).r,

where the integral is over the volume of the crystal.
For a monatomic crystal the electron density resides only at lattice sites and we can

write
ρ(r) = n0δ(r− L)

where n0 is the number of electrons in the atom free to respond to the incoming wave
and −e is the charge on an electron, but ρ will be more complicated than this for a more
general crystal type. With the von Laue condition, k− k′ = G, we have

F =

∫

Crystal

dV ρ(r)eiG.r = Nc

∫

Cell

dV ρ(r)eiG.r,

where Nc is the number of cells in the crystal. The integral over a single cell,

SG =

∫

Cell

dV ρ(r)eiG.r,

is called the structure factor — a dimensionless number, in general complex.
If the basis consists of s atoms at points rj in the unit cell, where j = 1, . . . , s, and

ρj(r) is the electron density of the j-th atom then

SG =
s∑

j=1

∫

Cell

dV ρj(r)e
iG.r =

s∑

j=1

eiG.rj
∫

Cell

dV ρj(r)e
iG.(r−rj) =

s∑

j=1

fje
iG.rj ,

where

fj :=

∫

Cell

dV ρj(r)e
iG.(r−rj)

6 Remember (11), ei(k−k
′).L=1 for constructive interference — if it is not unity for all L different lattice points

will give different complex phases and the sum will be zero.
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is called the atomic structure factor. To a good approximation fj is independent of rj
and G, since we expect ρj(r) to be strongly localised about r = rj , ρj(r) ≈ njδ(r− rj) ⇒
fj ≈ nj where nj is the number of electrons in atoms j that are free to respond to the
incoming X-ray.

Example 1: Caesium Chloride has a simple cubic structure with a basis consisting
of two atoms (s = 2), which we take to be a Caesium atom at r1 = 0 and a Chlorine atom
at r2 = a

2
(x̂+ ŷ + ẑ), using a conventional cell basis a1 = ax̂, a2 = aŷ, a3 = aẑ. Sodium

and Chlorine have different electronic structures and we expect them respond differently
to X-rays, so f1 6= f2. The reciprocal lattice is also cubic, with

G =
2π

a
(hx̂+ kŷ + lẑ).

This gives

Shkl = f1 + ei
a
2 (x̂+ŷ+ẑ).Gf2 = f1 + eiπ(h+k+l)f2 =

{
f1 − f2 for h+ k + l odd;
f1 + f2 for h+ k + l even.

Indeed experimentally reflections from (200) and (110) planes are stronger than from (100)
and (300) planes.

Example 2: Sodium has a BCC structure with a monatomic basis, but we can also
think of this a simple cubic structure with a diatomic basis, s = 2, consisting of identical
atoms of sodium at r1 = 0 and at r2 = a

2
(x̂ + ŷ + ẑ). This is similar to CsCl, but now

f1 = f2 and we expect all Bragg peaks corresponding to h + k + l odd to be completely
absent, and indeed this is the case.

The absence of h+ k+ l odd planes for BCC crystals can be understood intuitively in
a simple two-dimensional example with adjacent lines of atoms off-set from one another,

}
}

π}2π
π

When the phase of the wave reflected from adjacent layers differ by π they interfere
destructively, but then the next to adjacent layers must necessarily differ in phase by 2π
and interfere constructively.

Diffraction experiments on crystals require wavelengths of a few Å corresponding to
X-rays for electromagnetic radiation, but we can also use electrons or neutrons with de
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Broglie wavelength of similar size. For X-rays the scatters are electrons in the crystal,
but for neutrons it is the atomic nuclei that cause scattering while for electrons it is the
combined electrostatic potential of the crystal electrons plus the positively charged atomic
nuclei that cause scattering. We therefore get different information about the crystal from
X-rays, neutron and electron scattering.

4. Crystal Binding
The way in which atoms are bound together to form crystals depends in detail on

inter-atomic forces between the atoms making up the crystal. We shall discuss two cases
in some depth: inert elements and ionic crystals, but you should bear in mind that there
are other cases, such as covalent bonding, that will not be covered in this course.

Inert elements: (i.e. noble gases: Ne, Ar, Kr, Xe). These gases tend to form face centred
cubic crystals when they solidify, with a monatomic basis. (The physics of solid Helium is
very different and will not be covered here.)

To understand their structure we model the force between two atoms separated by r
using the Lennard-Jones potential,

U(r) =
B

r12
− A

r6
= 4ε

{(σ
r

)12
−
(σ
r

)6}
,

where A and B are two constants which can be traded for an energy ε and a length σ. The
second term above represents an attraction between atoms due to dipole-dipole interactions
while the first term is a repulsion due to quantum effects — when the atoms get so close
to one another that their outermost electronic orbitals start to overlap the Pauli exclusion
principle wants to prevent the electron wave-functions from overlapping too much.

The energy ε and the length σ are characteristics of each element and they can be
determined from experiments performed on the gaseous phase, determining the equation
of state by measuring virial co-efficients and viscosity,

Melting ε(10−23J) σ(Å)
Point (◦K)

Ne 24 50 2.74
Ar 84 167 3.40
Kr 117 225 3.65
Xe 161 320 3.98

The total binding energy of the crystal is obtained by summing the interactions over
all pairs of atoms, remembering to divide by 2 to avoid over-counting. For a crystal with
N atoms,

UTot =

(N
2

)
4ε
∑

L 6=0

{(
σ

|L|

)12

−
(
σ

|L|

)6
}
.

A stable configuration requires that the crystal is at a minimum of the potential energy. If
the lattice spacing is varied then the lattice vectors L will change length. Let L̃ be lattice
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vectors for a lattice with primitive cells having unit volume. Then a lattice with primitive
cells having volume R3 will have lattice vectors L = RL̃. For a monatomic crystal based
on a simple cubic lattice R is the same thing as the inter-atomic spacing, but for other
Bravais lattices it is not necessarily exactly the same as the inter-atomic spacing though
it will be proportional to it. In any case the potential energy of the whole crystal is

UTot = 2N ε

{
A12

( σ
R

)12
−A6

( σ
R

)6}
, (13)

where

An :=
∑

L 6=0

1

|L̃|n
.

Varying R is the same as varying the nearest neighbour separation.
For example in a one-dimensional crystal there is an atom at each lattice site, labelled

by an integer k, L̃ = kx̂ with x̂.x̂ = 1, and L = kRx̂ so |L| = kR and

An =
∑

k 6=0

1

kn
= 2

∞∑

k=1

1

kn
.

The sum ζ(n) =
∑
k 6=0

1
kn

is known as the Riemann ζ-function, and it can be calculated

analytically when n is even, for example ζ(12) = 691π12

638512857 .
For three dimensional crystals the sums will depend on the lattice type and must be

carried out numerically. For FCC lattices the results are

A6 = 14.45392 · · · , A12 = 12.13188 · · ·

(any lattice point in a FCC lattice has 12 nearest neighbours and successive terms in the
sum fall off very rapidly, particularly for A12 for which by far the greatest contribution to
the sum comes from just the nearest neighbors). The equilibrium separation R0 is obtained
by setting

dUTot
dR

= 0 ⇒ −12A12
σ12

R13
0

+ 6A6
σ6

R7
0

giving

R6
0 = 2

(
A12

A6

)
σ6 ⇒ R0 = 1.090σ.

The experimentally measured values of R0 in real crystals are

Ne Ar Kr Xe
R0

σ
1.14 1.11 1.10 1.09

The increasing discrepancies in Kr, Ar and Ne are due to quantum effects as the outer
electron shells are more and more tightly bound in the smaller atoms.
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Using R0

σ = 1.09 in (13) gives the binding energy per atom in equilibrium

1

N UTot(R0) = −8.6ε.

Note that values of ε given above, and hence the binding energy per atom, are proportional
to the melting point of the crystals.

Ionic crystals: (e.g. NaCl, CsCl, ZnS). Crystals made up of positive and negative ions,
such as salt, in a regular array are called ionic crystals. The binding force for ionic
crystals is due to the Coulomb interaction of the positive and negative charges on the
ions. Assuming the atoms are singly ionised the binding energy is obtained from the

Coulomb energy between particles of charge ±e a distance r apart, e2

4πǫ0r
. This is a much

longer range force than that arising from the Lennard-Jones potential for inert elements.
If the separation between nearest neighbour ion pairs of opposite charge is R and the total
number of ion pairs (molecules) is N then the total electrostatic energy in the crystal is

UCol =
e2N
4πǫ0



− 1

|R| +
∑

L 6=0

(
1

|L| −
1

|L+R|

)
 . (14)

The sum over 1
L comes from like sign ions at each lattice point and is positive because like

sign ions repel each another.
For example in a one-dimensional crystal, consisting of a regular line of molecules a

distance a apart, the nearest neighbour ionic separation is R = a
2 ,

= +ve ion
= −ve ion

R

a

and

UCol =
e2N
4πǫ0

(
· · · − 1

3R
+

1

2R
− 1

R
− 1

R
+

1

2R
− 1

3R
+ · · ·

)

=
e2N
2πǫ0

(
− 1

R
+

1

2R
− 1

3R
+ · · ·

)
= − e2N

2πǫ0R

(
1− 1

2
+

1

3
− · · ·

)
.

Note that we use N here, rather than N
2
as for the inert elements, because we are summing

over 2N ions and, dividing by one-half to avoid over-counting just reduces this to N .
We need the sum

1− 1

2
+

1

3
− · · · =

∞∑

k=1

(−1)k+1

k
.
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This is a convergent series,
∞∑

k=1

(−1)k+1

k
= ln 2, (15)

as is seen by Taylor expanding7

ln(1 + x) = x− x2

2
+
x3

3
− · · ·

⇒
x=1

ln 2 = 1− 1

2
+

1

3
− · · · . (16)

Thus

UCol = − e2Nα

4πǫ0R

with α = 2 ln 2 = 1.386294 . . ..
For a three dimensional crystal the sum over lattice points in (14) must be carried out

numerically and the dimensionless number

α = −1 +R
∑

L 6=0

(
1

L
− 1

|L+R|

)
(17)

is called the Madelung constant. Again it depends on the sequence in which the crystal
is put together and it is best to compute it by first assembling small neutral blocks and
then putting them together to form the crystal.

The Madelung constant depends on the lattice structure:

Structure α Example

SC 1.762675 CsCl
BCC 1.747565
FCC 1.6381 NaCl

The total energy includes repulsion of the atoms when they get too close to one
another, due to the exclusion principle and electron wave-function overlap — this is the
same effect as for inert elements. It can be modelled as a 1

Rm repulsive potential (for noble
gases m = 12) but, unlike the inert element case, it is not possible to obtain the form from
experiments on the gaseous phase. With this assumption the total potential is

UTot = N
(
C

Rm
− e2α

4πǫ0R

)
, (18)

7 While (15) is correct, the infinite series is convergent, it’s value depends on the order in which it is summed, it

is said to be conditionally convergent. Physically this means, for an infinite crystal, the Coulomb energy stored in the

crystal would depend on how the crystal is assembled — real crystals however are never truly infinite and the sums will

always really be finite with unambiguous values.
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where C is a positive constant. The equilibrium separation, R0, is obtained by demanding

∂UTot
∂R

∣∣∣∣
R0

= 0 ⇒ − mC

Rm+1
0

+
e2α

4πǫ0R2
0

= 0,

giving

Rm−1
0 =

4πǫ0mC

e2α
.

Putting this value of R0 into (18) gives the binding energy per ion par

UTot(R0)

N = − e2α

4πǫ0

(
m− 1

m

)
1

R0
.

The value of m does not affect the result much, as long as m is large.

39



5. Crystal Vibrations – Phonons
A real crystal is not a perfect lattice, the atoms and molecules making up the crystal

will vibrate about their equilibrium positions. These vibrations will propagate through the
crystal at definite speeds, as sound waves. There will also be vibrations due to thermal
motion — a warm crystal is continuously humming!

One-dimensional crystal (monatomic basis)

To illustrate the concepts, consider again a one-dimensional monatomic crystal con-
sisting of identical atoms a distance a apart. For small amplitude vibrations we can model
the atomic vibrations by thinking of each pair of atoms being linked with a spring with
identical spring constant C > 0 for each pair, with the spring relaxed when the atoms are
a distance a apart. The restoring force on the n-th atom due to the (n+1)-th atom on its
right is F = C(x− a) (the force is to the right if x > a).

x
a

In a chain of such atoms, which are vibrating around their equilibrium positions, denote
the position of the n-th atom by xn. The equilibrium position of the n-th atom is na but
when the crystal vibrates xn 6= na in general. To construct a specific mathematical model
we need to specify boundary conditions: we choose8 N + 1 atoms and fix x0 = xN = 0.
If the atoms are vibrating xn is a function of time xn(t). Denote the displacement of the
n-th atom from its equilibrium position by un(t),

un(t) = xn(t)− na,

then the total force on the n-th atom is the sum of the forces due to the atoms on either
side,

Fn = C(xn+1 − xn − a)− C(xn − xn−1 − a) = C(un+1 − 2un + un−1).

x

5a3a 6a aN...2a0 a 4a

−u4 4

8 Alternatively we could use periodic boundary conditions on N atoms and set x0=xN without specifying its value.

For very large N which boundary conditions we choose makes little difference.
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If the mass of each atom is M , then Newton’s second law implies

Mün = C(un+1 − 2un + un−1). (19)

This gives a set of N coupled linear ODE’s for the un(t), which we can solve. The solutions
are oscillating. Using a complex notation write

un(t) = ε0e
−i(ωt−Kna) (20)

with ω, K and ε0 constants (the actual displacements are the real part of these complex
un). ω is an angular frequency, K is a wave-number (K > 0 represents waves moving to
the right and K < 0 waves moving to the left) and ε0 the amplitude of the displacement.
Using this form in (19) gives

−ω2M = C(eiKa + e−iKa − 2) = 2C(cosKa− 1) = −4C sin2
(
KA

2

)
.

Taking the positive square root we get a relation between ω and K

ω = 2

√
C

M
sin

∣∣∣∣
Ka

2

∣∣∣∣ . (21)

Since the wavenumber |K| = 2π
λ is related to the wavelength λ equation (21) relates the

frequency to the wavelength ω(K) — it is an example of a dispersion relation.

/aπ/aπ K

ω

−

Since in (20) un+1(t)
un(t)

= eiKa = ei(K+ 2pπ
a ))a, for any integer p, we need only consider

K in the range −π
a < K ≤ π

a , or equivalently λ = 2π
|K| ≥ 2a, wavelengths with λ < 2a are

meaningless! This can be visualised using the figure below.
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For ease of visualisation the displacements un at one instant of time are represented ver-
tically here and the horizontal displacement represents the equilibrium position of the
atoms, na. The green curve has a wavelength one-third of the red curve, but the red curve
is perfectly adequate for representing the displacements, there is nothing to be gained by
considering the shorter wavelength.

The range of wavevectors |K| ≤ π
a is precisely the First Brillouin zone of the one-

dimensional crystal. For N large, but still finite, we can decompose a general vibration
of the crystal into a linear superposition of normal modes. With periodic boundary con-
ditions, u0 = uN ⇒ eiKNa = 1 and so we must have KN = 2πp

a with p an integer. So

K = 2p
N
(
π
a

)
and −π

a
≤ K ≤ π

a
⇒ p = ±1,±2, · · · , N

2
. There is a finite number, N , of

modes (p = 0 corresponds to a rigid translation of the whole crystal and is uninteresting).
In other words the allowed values of K,

K = ± 2π

Na
,± 4π

Na
,± 6π

Na
, · · · ,±π

a
,

are discrete for N finite — we get a continuum of K-values only in the N → ∞ limit.

Note that:

• For K small and positive, 0 < K << π
a , (21) gives ω ≈

√
C
MKa leading to a linear

relation between frequency and wavelength with velocity

vp =
ω

K
=

√
C

M
a.

The larger the spring constant, C, i.e. the stiffer the crystal, the greater the speed of
propagation of sound waves.

• More generally, away from small K, the velocity depends on the wavelength. A wave-
packet made up of a combination of different wavelengths will tend to disperse because
long wavelengths (small K) move faster than shorter wavelengths (with K near ±π

a
).

Waves move with group velocity

vg =
dω

dK
=

√
C

M
a cos

(
Ka

2

)
.
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K

C/M

vg

a

π /a

• For small K, vg ≈ vp and the group velocity is the same as vp,
9 the dispersion relation

is linear.

• For K = ±π
a the group velocity vg = 0: we have standing waves. The displacements

of neighbouring atoms are exactly out of phase

un+1(t)

un(t)
= eiπ = −1.

Sound waves with these wavelengths are reflected off the Brillouin zone boundary.

One-dimensional crystal (diatomic basis)

For a basis consisting of two atoms (e.g. positive and negative ions in an ionic crystal)
with different masses M1 and M2 there are further interesting phenomena. Again take the
lattice spacing to be a and suppose that the equilibrium separation between M1 and M2

atoms is a
2 (in the picture below M1 atoms are blue and M2 atoms are red).

9
vp=

ω
K , for any K, is called the phase velocity. An observer moving with speed vp would see a constant phase

in the atomic displacements — this is not necessarily a physical velocity. In most situations energy, and other physical

quantities, are transported with the group velocity.
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a

a/2 a/2

Denote the displacements of the n-thM1 atom from equilibrium by un and that of the
n-th M2 atom by vn. For small displacements we can model the forces as springs between
nearest neighbour atoms and, for simplicity, we shall assume that the spring constants are
all the same, C. In the picture below the vertical lines represent the equilibrium positions,

0 a 2a 3a 4a

00 1 1 2uvu−vu v2 u3 −v3 −u4

Then Newton’s equations are

M1ün = C(vn − un)− C(un − vn−1) = C(vn + vn−1 − 2un)

M2v̈n = C(un+1 − vn)− C(vn − un) = C(un+1 + un − 2vn).

Looking for a (complex) solution of the form

un(t) = ε1e
i(Kna−ωt)

vn(t) = ε2e
i(Kna−ωt) ⇒ −M1ω

2ε1 = C
(
(1 + e−iKa)ε2 − 2ε1

)

−M2ω
2ε2 = C

(
(eiKa + 1)ε1 − 2ε2

)

(again the physical displacements are the real parts of the complex un(t) and vn(t).) This
can be written in matrix form

(
M1ω

2 − 2C C(1 + e−iKa)
C(1 + eiKa) M2ω

2 − 2C

)(
ε1
ε2

)
= 0.

If the matrix is invertible the only solution is ε1 = ε2 = 0, a solution with ε1 and ε2
not both zero only exists if the matrix is not invertible i.e. the determinant is zero.
This requires

M1M2ω
4 − 2C(M1 +M2)ω

2 + C2(2− eiKa − e−iKa) = 0,

or

ω2 =
C(M1 +M2)± C

√
(M1 +M2)2 − 4M1M2 sin

2
(
Ka
2

)

M1M2
.
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We see that there are now two different frequencies for each value of −π
a ≤ K ≤ π

a ,
corresponding to two different vibrational modes for each K. The lower sign (lower
frequency) requires ε1 = ε2, so M1 and M2 are oscillating in phase, while the upper
sign (higher frequency) requires ε1 = −ε2, so M1 and M2 are oscillating exactly out
of phase — while M1 is displaced to the left the adjacent M2 is displaced to the
right. These two possibilities are shown below, where the M1 atoms are red and the
M2 atoms are blue (again, for clarity, the displacements un and vn are represented
vertically and the equilibrium positions, na and

(
n+ 1

2

)
a, horizontally)

= negative ion

= positive ion

Experimentally the different modes can be preferentially excited in an ionic crystal if M1

are positive ions and M2 are negative ions. Then a passing electromagnetic wave will
push the positive and negative ions in different directions, because they are pushed in
opposite directions by an electric field. However an acoustic vibration (hit the crystal with
a hammer!) does not distinguish between positive and negative ions, they are both pushed
in the same direction by a passing acoustic wave. For a given K the lower frequency mode

45



is called the acoustic mode, because it can be excited by a passing sound wave through the
crystal, while the upper frequency is called the optical mode, because it can be excited by
a passing electromagnetic wave (light) through the crystal.

The dispersion relation, shown below, has two branches, an acoustic branch and an
optical branch.

ω

acoustic

/a−π π /a K

2C/M

2C/M

2

1

optical

For K small, 0 < K << π
a
, sin2

(
Ka
2

)
≈ K2a2

4
and

ω2 =





2(M2+M2)C
M2M2

− C(Ka)2

2(M1+M2)
+ · · · Optical branch ( ε1

ε2
= −1);

C(Ka)2

2(M1+M2)
+ · · · Acoustic branch ( ε1

ε2
= 1).

For the optical branch ω2 is a maximum at K = 0, so vg = 0 there, and the dispersion
relation looks like an inverted parabola for small K, while the acoustic branch has a linear

dispersion relation, ω ≈
√

C
2(M1+M2)

aK and vg = vp =
√

C
2(M1+M2)

a.

In two dimensions there are even more possibilities. For a monatomic basis, when
there is only one mode in one dimension, there are two different modes in two dimensions,
the atoms can be displaced in the same direction as the wavevector K as shown on the left
in the picture below (a longitudinal mode) or at right-angles to the wavevector as shown
on the right in the picture below (transverse mode).
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u u3

2
1

u u −u−u0 1 2 3

The amplitude ε0 in one-dimension becomes a vector, ε0, in two-dimensions, with K par-
allel to ε0 in the longitudinal case and K. ε0 = 0 in the transverse case. If the crystal
is anisotropic and the spring constants are different in different directions, the dispersion
relation will be different for the longitudinal and transverse modes.

For a diatomic 2-dimensional crystal there can be up to four modes: longitudinal
optical (LO), transverse optical (TO), longitudinal acoustic (LA) and transverse acoustic
(TA), each with a different dispersion relation

ω

/a−π π /a K

TA

TO

LA

LO

47



In three dimensions there can be two different transverse optical and transverse acous-
tic modes for each frequency, giving six different modes: one LO, two TO, one LA and
two TA. The dispersion relation can become very complicated as it can be different for
different directions [hkl]. For example the dispersion relations measured experimentally in
lead (FCC), in various crystal directions, are shown below

Data are shown for wavevectors in three different directions as indicated in the Wigner-
Seitz cell of the reciprocal lattice in (b) (lead has a face centred cubic structure so the re-
ciprocal lattice is body centred cubic and the Wigner-Seitz cell is a truncated octahedron).
Γ marks the centre of the Wigner-Seitz and K traces out a triangle with sides Γ−K −X ,
X −W −X and X − Γ. Lead is not an ionic crystal and only acoustic modes appear in
the upper panel. On the line Γ−X there is only one transverse acoustic branch and this
bifurcates into two on X−W −X , which combine again into a single branch at the second
X but bifurcates again before reaching K. The direction Γ−X is [100] and Γ−K is [110].

Quantisation

To understand fully the nature of crystal vibrations it is necessary to take quantum
mechanical effects into account. In quantum mechanics a classical wave can sometimes
best be described by particles in the quantum theory. A quantum of crystal vibration is
called a phonon — a particle of sound.

The vibrations of the crystal atoms or molecules about their equilibrium positions
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can be modelled using a harmonic oscillator. In quantum mechanics the energy levels of a
harmonic oscillator are labelled by a non-negative integer n = 0, 1, 2, 3, . . . and are equally
spaced

En =

(
n+

1

2

)
h̄ω,

where ω is the characteristic frequency of the oscillator. In thermal equilibrium, in contact
with a heat bath at temperature T , the probability of a given oscillator being in energy
eigenstate n is given by the Boltzmann distribution

Pn =
e
− En

kBT

∑∞
n=0 e

− En
kBT

=
e
−(n+ 1

2 )
h̄ω

kBT

∑∞
n=0 e

−(n+ 1
2 )

h̄ω
kBT

=
yn∑∞
n=0 y

n
,

where kB is Boltzmann’s constant and y = e
− h̄ω

kBT lies in the range 0 ≤ y < 1. The denom-
inator in this expression for Pn is determined by the requirement that the probabilities
sum to one,

∑∞
n=0 Pn = 1. For y in this range

∞∑

n=0

yn =
1

1− y
⇒ Pn = yn(1− y).

The expectation value of n, i.e. its most likely value, denoted by < n >, is the weighted
sum

< n >=
∞∑

n=0

nPn = (1− y)
∞∑

n=0

nyn,

which can be evaluated using

∞∑

n=0

nyn = y
d

dy

( ∞∑

n=0

yn

)
= y

d

dy

(
1

1− y

)
=

y

(1− y)2
,

giving

< n >=
y

1− y
=

1

e
h̄ω

kBT − 1
.

This is the Planck distribution.
Label the possible crystal vibrational modes by their wavenumber K and a discrete

variable s (denoting the different modes: TO, TA, etc), then the thermal energy in vibra-
tional modes of the crystal, when it is at a temperature T , is the expectation value of the
energy

U =< E > =

〈
∑

K,s

(
nK,s +

1

2

)
h̄ωK,s

〉
=
∑

K,s

(
< nK,s > +

1

2

)
h̄ωK,s

=
∑

K

∑

s

h̄ωK,s(
e

h̄ωK,s
kBT − 1

) +
∑

K

∑

s

h̄ωK,s
2

.
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The last term on the right hand side here is a constant, independent of T , and can be
ignored in the calculation of thermal properties of crystals below.

For simplicity first consider a monatomic one-dimensional crystal, where we can ignore
s (there is only one mode for each K) and K = 2p

N
(
π
a

)
with p = ±1,±2, . . .. The

∑
K

is equivalent to
∑
p but for large N we can replace the sum with an integral,

∑
K →∫

D(ω)dω, where D(ω) denotes the number of quantum states in the frequency range ω to
ω + dω. D(ω) is called the density of states, it is calculated below. Thus we get

U =

∫ ∞

0

D(ω)h̄ω(
e

h̄ω
kBT − 1

)dω. (22)

More generally, for a polyatomic basis and/or in higher dimensions when there is more
than one mode for each K, the internal energy of the crystal is

U =
∑

s

∫ ∞

0

D(ωs)h̄ωs(
e

h̄ωs
kBT − 1

)dωs.

Density of states

To calculate D(ω), again initially in one dimension to simplify the demonstration,
consider a one-dimensional crystal with lattice spacing a and periodic boundary conditions.
The allowed wavevectors are K = 2p

N
π
a with p±1,±2, . . ., so the spacing between successive

wavevectors is 2
N
π
a

and the number of modes in a range δK is Na
2π
δK. The number of

modes δN in a frequency range δω is therefore

δN =
dN

dω
δω = 2

(Na

2π

)
dK

dω
δω = D(ω)δω

(the extra factor of 2 here is inserted to allow for the fact that there are two modes for
each ω, one moving to the left and one to the right). Since Na = L, the length of the
crystal, this gives

(
L

π

)
dK

dω
δω = D(ω)δω ⇒ D(ω) =

(
L

π

)
dK

dω
,

and we can calculate the density of states D(ω) if we know the dispersion relation ω(K).
For example the dispersion relation (19) for a one-dimensional crystal, with ω0 =

2
√

C
M , reads

ω(K) = ω0 sin

∣∣∣∣
Ka

2

∣∣∣∣ ⇒ dω

dK
=
a

2
ω0 cos

∣∣∣∣
Ka

2

∣∣∣∣ (K ≥ 0)

⇒ D(ω) =
2L

aπ

1

ω0

1

cos
(

|K|a
2

) =
2N
π

1√
ω2
0 − ω2
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Note that at the Brillouin zone boundary, K → π
a , ω → ω0 and D(ω) → ∞. A

divergence in the density of states at certain characteristic frequencies is not uncommon
and is called a van Hove singularity.

In three dimensions we can use the same ideas to get the density of states. Consider
a crystal with simple cubic symmetry with N primitive cells and lattice spacing a. If
the linear dimensions are L1, L2 and L3 then the volume is V = L1L2L3 = Na3. For
simplicity we take L1 = L2 = L3 := L = N 1

3 a and assume N 1
3 is an integer, for large N

this is not a significant restriction, at least as far as intrinsic properties of the crystal are
concerned. Imposing periodic boundary conditions implies

ei(Kxx+Kyy+Kzz) = ei
(
Kx(x+L)+Ky(y+L)+Kz(z+L)

)

⇒ Kx, Ky, Kz = 0,±2π

L
,±4π

L
, . . . ,±N 1

3π

L
.

There is therefore one value of K per volume
(
2π
L

)3
= 8π3

V in K-space. The number of

quantum modes in a volume d3K = dKxdKydKz of K-space is therefore d3N = V
8π3 d

3K.
For large N we can approximate the discrete distribution of modes in K-space by a con-
tinuum and imagine integrating over a sphere of radius K and area 4πK2 in K-space, so
the radius K is the only variable left,

V

8π3
d3K =

V

8π3
dKxdKydKz −→∫

dΩ

V

2π2
K2dK.

The number of modes inside such a sphere, with volume 4π
3
K3 (i.e. with wavenumber less

than K), is

N =
V

8π3

4π

3
K3 =

V

6π2
K3.

This now gives the three-dimensional density of states as

dN = D(ω)dω =
dN

dω
dω =

dN

dK

dK

dω
dω =

V

2π2
K2 dK

dω
dω ⇒

D(ω) =
V

2π2
K2

dK

dω
. (23)

which can be evaluated once the dispersion relation, ω(K), is known.

Debye model

The Debye model makes the simplifying assumption that the dispersion relation is
linear, ω = vK, where v = dω

dK , the speed of sound, is independent of ω. From this we get
the density of states

D(ω) =
V

2π2

ω2

v3
.
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If there are N primitive cells in the crystal then there is a maximum frequency ωD, a
cut-off frequency, determined by

N =

∫ ωD

0

D(ω)dω =
V

2π2

1

v3

∫ ωD

0

ω2dω =
V

6π2

ω3
D

v3
⇒ ωD =

(
6π2N

V

) 1
3

v.

The maximum angular frequency ωD is called the Debye frequency. With this cut-off
the density of states for the Debye model looks like this:

ωD(   )

ωω
D

The contribution to the thermodynamic internal energy is

U =

∫ ωD

0

D(ω)h̄ω

e
h̄ω

kBT − 1
dω =

V h̄

2π2v3

∫ ωD

0

ω3dω

e
h̄ω

kBT − 1
(24)

for each polarisation. For simplicity we shall just take v to be the same for each of the
three acoustic modes, then the total internal energy is three times (24). Changing the
integration variable from ω to x = h̄ω

kBT
gives

U =
3V (kBT )

4

2π2v3h̄3

∫ xD

0

x3dx

ex − 1
,

where xD = h̄ωD

kBT
.

It is conventional to define a temperature, ΘD called the Debye temperature, by
kBΘD = h̄ωD,

ΘD =

(
6π2N

V

) 1
3 h̄v

kB
,

with N
V := nc the number of primitive cells per unit volume. Then xD = ΘD

T and

U = 9NkBT

(
T

ΘD

)3 ∫ ΘD
T

0

x3dx

ex − 1
.
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U(T, V ) depends on the volume through ΘD ∝ V − 1
3 .

Other thermodynamic quantities can be obtained from U(T, V ). The heat capacity
of the crystal at constant volume, for example, is

CV =

(
∂U

∂T

)

V

.

This is most easily calculated from (24), multiplied by 3 to account for the three acoustic

modes. The only T dependence in (24) is in e
h̄ω

kBT , so

CV =
3V h̄

2π2v3
h̄

kBT 2

∫ ωD

0

ω4e
h̄ω

kBT dω
(
e

h̄ω
kBT − 1

)2 =
3V

2π2v3
k4BT

3

h̄3

∫ xD

0

x4exdx

(ex − 1)2

= 9NkB

(
T

ΘD

)3 ∫ xD

0

x4exdx

(ex − 1)2
.

The specific heat, cV = CV

V , is plotted below:

T

3k  nB c

T

c
V

We can evaluate the integral in (24) in certain limits:

• Low temperatures: kBT << h̄ωD, xD → ∞,

∫ ∞

0

x3

ex − 1
=

∞∑

n=1

∫ ∞

0

x3e−nxdx =

∞∑

n=1

1

n4

∫ ∞

0

u3e−udx where u = nx

= Γ(4)
∞∑

n=1

1

n4
= 3!

∞∑

n=1

1

n4
=
π4

15
,

leading to thermal energy

U ≈ 3π4

5
NkBT

(
T

ΘD

)3
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and specific heat

cV =
CV
V

≈ 12π4

5

(N
V

)
kB

(
T

ΘD

)3

=
2π2

5
kB

(
kBT

h̄v

)3

. (25)

There formula are only correct for T small, in particular

lim
T→0

Cv
V T 3

=
2π2

5

k4B
(h̄v)3

is constant. This is an important result from the Debye approximation, the specific
heat due to crystal vibrations goes like ∼ T 3 at low T . For a metallic crystal there
is another contribution to the specific heat, due to electrons free to roam around the
crystal, which we shall evaluate later. It may be necessary to go temperatures as low
as T < ΘD

50 to see this T 3 behaviour.

• In the opposite limit, of high temperatures, xD << 1, we can expand 1
ex−1

=

1

x+ x2

2 + x3

6 +··· =
1
x

(
1− x

2 + x2

12 − · · ·
)
and

U ≈ 9NkBT

(
T

ΘD

)3
x3D
3

= 3NkBT

is linear in T , hence the specific heat is constant

cV =
CV
V

≈ 3NkB
V

.

This is the classical result — constant specific is indeed observed at large T and is
known as the Dulong-Petit result. The Dulong-Petit value for the specific heat of
a crystal can be understood from the equipartition theorem: each degree of freedom
in the crystal has the same energy 1

2kBT , each atom has 3 co-ordinates labelling its
position and 3 momenta giving 6 degrees of freedom, hence the internal energy is
U = 6N kBT

2 = 3NkBT .
10 This classical result assumes that all degrees of freedom

are excited but, if T is not very large T << ΘD, not all degrees of freedom can be
excited and the specific heat is reduced

Values of ΘD for some elements are: 158◦K (Na); 400◦K (Mg); 470◦K (Fe); 2230◦K (C).

Einstein model

The linear dispersion relation, ω = vK, in the Debye model is a reasonable approxi-
mation for acoustic modes at small K, it is not a good model for optical modes in a crystal
with a polyatomic basis. Einstein suggested a simplified density of states

D(ω) = N δ(ω − ωE)

10 The internal energy of a monatomic gas is 3
2NkBT , not 3NkBT , because the degrees of freedom associated with

the positions of the atoms in an ideal gas do not contribute to the energy and so do not contribute to the internal energy.

In a crystal the position does contribute as it takes energy to move an atom away from its equilibrium position.
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in this case, where ωE is a fixed frequency and δ(ω − ωE) is a Dirac δ-function, vanishing
unless ω = ωE . The integral over x in (24) is trivial in this case: if there are p optical
modes, all with the same ωE ,

U =
pN h̄ωE

e
h̄ωE
kBT − 1

and the specific heat is

cV =

(N
V

)
(h̄ωE)

2

kBT 2

p e
h̄ωE
kBT

(e
h̄ωE
kBT − 1)2

→
{
p
(N
V

)
kB, T → ∞

p
(N
V

) (
h̄ωE

kBT

)2
kBe

− h̄ωE
kBT , T → 0.

The Einstein result is the same for large T as the Debye result, the specific heat approaches
a constant at large T , but at low T the specific heat for optical modes in the Einstein model
is much less than that of the acoustic modes in the Debye model. The two are compared
below (with p = 3): the red curve is the Debye model and blue Einstein model,

T

3k  nB c

T

c
V

It is stressed that these calculations only take into account the vibrational modes of
the crystal, any contribution from free electrons is ignored. The low T results are only valid
for crystals that are electrical insulators, metallic crystals have an extra contribution to
the specific heat coming from free electrons in the crystal. We shall see later that electrons
contribute a linear term to the acoustic mode specific heat in a metallic crystal, giving
cV ≈ AT +BT 3 at low T , with A and B constants. At very low temperatures the linear
term dominates the cubic term and the metallic specific heat is linear in T .
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π /aπ /a

ω

K−

Debye

Einstein

Both the Debye and the Einstein models are crude approximations to the dispersion re-
lation in real crystals, they are plotted in blue above and compared to the one-dimensional
diatomic results for acoustic and optical modes calculated earlier. Real crystals are more
complicated: a real experimental dispersion relation for phonons, determined by neutron
scattering, for acoustic modes in aluminium, is shown below,

ω

D(  )ω

Thermal conductivity

Heat energy in a crystal is due to vibrating atoms and so we expect phonons to
conduct heat. For simplicity consider a crystal with monatomic basis. Denote the equi-
librium energy density in phonons (lattice vibrations) by w(r) (so the internal energy is∫
crystal

w(r)dV ) and the phonon velocity by v (in the presence of a temperature gradi-

ent w(r) will vary from place to place). Now introduce a temperature gradient T (x) in
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the x-direction and let the phonon mean free path (the average distance between phonon
collisions) be l. Then the average time between phonon collisions is τ = l

v
. Any phonon

arriving at a general point r0 of the crystal has, on average, come from a sphere of radius
l centred on r0, this sphere represents the locus of points from which the phonons arriving
at r0 last scattered and w(r) will be different at different points on this sphere so, in the
presence of a temperature gradient, phonons arriving from different directions will carry
different energy — those coming from directions in which the temperature is hotter will
have greater energy than those coming from directions in which the temperature is cooler.
If T (x) is constant in the y and z-directions then w(r) will be too and w(x) depends only
on x.

cosl θ

l

θ
High TLow T

v

v

v

There will be a net flux of energy, a thermal current, in the direction of decreasing T
as heat energy diffuses from regions of higher T to lower T . The x component of v is
vx = v cos θ and, denoting an infinitesimal area element of the sphere by dA = l2 sin θdθdφ
the thermal current is

J =
1

4πl2

∫

sphere

vxw(x)dA

=
2π

4πl2

∫ π

0

(v cos θ)w(x0 − l cos θ)l2 sin θdθ

≈ v

2

∫ π

0

{
w(x0)− l cos θ

(
dw

dx

)

x0

}
cos θ sin θdθ

=
v

2

∫ 1

−1

{
w(x0)α− αl

(
dw

dx

)

x0

}
αdα (α = cos θ)

= −vl
3

(
dw

dx

)

x0

.

Now dw
dx is related to the thermal gradient, dTdx , by the chain rule

dw

dx
=
dw

dT

dT

dx
.

Since there is a thermal gradient the system is not in thermal equilibrium but we still
expect the thermal energy per unit volume w(T, V ) to depend on V as well as T , dwdT here

57



is more correctly written ∂w
∂T

∣∣
V

which is the specific heat at constant volume, cV , so

J = −cV vl
3

dT

dx
= −cV v

2τ

3

dT

dx
,

where τ = v
l
is average time between phonon collisions. The thermal conductivity, κ,

is defined as the ratio of the thermal current to the thermal gradient,

J = −κdT
dx
,

and we get the important result that the thermal conductivity

κ =
cV v2τ

3
(26)

is proportional to the specific heat of the crystal.
Two limiting cases:

• At high T , cV = 3kBnc is a constant. It is reasonable to expect that the collision rate
will be proportional to the phonon density,

τ−1 ∝< n >=
1

e
h̄ω

kBT − 1
≈

T→∞
kBT

h̄ω
∝ T,

Since the phonon velocity is independent of the temperature (it is determined by the
dispersion relation), we expect

κ ∝ 1/T

at high T . Experimentally κ ∝ 1
T ν with ν between 1 and 2.

• For low T , < n >≈ e
− h̄ω

kBT ⇒ τ ∝ e
h̄ω

kBT → ∞ as T → 0. Hence κ → ∞, except
that the photon mean free path l is necessarily limited by the crystal size or, more
realistically, the distribution of lattice imperfections or chemical impurities in the

crystal, so τ tends to some finite value τ0 as T → 0 and κ → cvv
2τ0
3 . In the Debye

approximation cV ∝ T 3 at low T , so

κ ∝ T 3.

Crystal momentum and Umklapp processes

We can always map any wavevector into the first Brillouin zone by adding a reciprocal
lattice vector. If K is not in the first Brillouin zone there always exists a reciprocal
lattice vector G such that K + G is. This is a three-dimensional generalisation of our
earlier observation that, for a one-dimensional crystal with lattice spacing a, we need only
consider wave-numbers |K| ≤ π

a . If two phonons with wave-vectors K1 and K2, both in
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the first Brillouin zone, collide and merge to give a single phonon with wave-vector K′
3

then conservation of momentum says that

h̄K1 + h̄K2 = h̄K′
3, (27)

but K′
3 may not be in the first Brillouin zone. However we can always find a reciprocal

lattice vector G so that K3 = K′
3 +G is in the first Brillouin zone,

h̄K1 + h̄K2 = h̄K3 + h̄G. (28)

If G = 0 then we obviously have

h̄K1 + h̄K2 = h̄K3

identically, this called a normal process (N -process). Even if G 6= 0 it still plays no role
in the physics and equation (28) is completely equivalent to

h̄K1 + h̄K2 = h̄K3. (29)

As explained at the bottom of page 40 for a one-dimensional crystal wave-vectors outside
the first Brillouin are not important for phonon physics and the same is true in three
dimensions. (27) and (28) are indistinguishable physically. A G 6= 0 process is called
an umklapp process (U -process).11 An umklapp process involves Bragg reflection of the
final state phonon from a Brillouin zone boundary. The momentum h̄K is called the
crystal momentum and it is not conserved absolutely in an umklapp process, it is only
conserved up to a reciprocal lattice vector. Conservation laws in physics are a consequence
of symmetries of the underlying dynamics and in free space conservation of momentum is
a consequence of translation invariance. A crystal does not have translational invariance
under arbitrary small displacements, it only has translational invariance under discrete
translations by a direct lattice vector. This is a smaller symmetry than invariance under
all possible translations of any magnitude and the resulting conservation law, conservation
of crystal momentum, is less powerful than in free space — we only have conservation of
momentum up to a reciprocal lattice vector.

At a temperature T we only expect phonons with h̄ω <∼ kBT to be present and, if T is
not too high, this means ω << ωD that K1 so K2 will be small and deep within the first
Brillouin zone so thatK3 is also well within the first Brillouin zone. Umklapp processes will
then be very rare and conservation of crystal momentum is exact momentum conservation.
If this is the case then there is no dissipation in phonon collisions, momentum and energy
are conserved and we expect the thermal conductivity κ → ∞ at low T (this argument
assumes a perfect crystal and ignores impurities and imperfections in the crystal). As the
temperature increases umklapp processes become more common and momentum leaks out
of the phonons and through umklapp processes giving rise to dissipation and energy loss.
Of course the total physical momentum is still conserved, h̄G is absorbed by the crystal
as it is buffeted about by the phonons.

11 “Umklapp” means “flip over” in German.

59



6. Metals
In a metallic crystal, such as magnesium or iron, we need to take account of the fact

that some electrons are free to move around the crystal and are not necessarily bound to
specific atoms as they are in an insulator. There is a background sea of mobile electrons.
To a first approximation we can treat these electrons as an ideal gas, though we must be
careful to take into account the quantum nature of the electrons.

Consider a cubic crystal of size L, so the volume is V = L3. Impose periodic boundary
conditions on the electron wave-functions,

Ψ(x+ L, y, z) = Ψ(x, y, z),

and similarly for the y and z directions. Assume any wave-function can be expanded in a
basis of plane-waves,

ψk(r, t) = ei(k.r−ωkt).

ψk is periodic, with period L, if kx = 0,±2π
L ,±4π

L , . . ., with similar conditions on ky and
kz. Unlike the case of phonons there is no upper limit on ki being imposed here.

In the absence of any interactions the Shrödinger equation for ψk is

ih̄
∂ψk

∂t
= − h̄2

2m
∇2ψk

which gives

h̄ωk =
h̄2

2m
k.k ⇒ εk = h̄ωk =

h̄2

2m
k2.

The momentum is

p̂ψk = −ih̄∇ψk = h̄kψk ⇒ p = h̄k,

as usual. The quantum nature of the electrons, together with the periodic boundary
conditions implies that there is one quantum state, one wave-vector, for every volume(
2π
L

)3
in k-space. If there are N mobile electrons12 in the volume V each must occupy a

separate quantum state, because of the exclusion principle. One might expect the electrons

quantum states to fill a sphere in k-space of volume N
(
2π
L

)3
= N

(
8π3

V

)
, except there is

an extra factor of 2 due to the fact that electrons have spin-1/2 and therefore have two
spin states, spin up and spin down, for each value of k, so they actually fill a sphere with

half this volume, N
(

4π3

V

)
. For finite N the distribution of quantum states in k-space

is discrete but in the limit of large N it can be approximated with a smooth continuous
distribution within a sphere of volume

4π

3
k3F = N

(
4π3

V

)

12
N might not be the same as the number of primitive cells in the crystal, there could be more than one mobile

electron per primitive cell, e.g. Mg. For a monovalent metal with a monatomic basis, e.g. Na, K, N=N .

60



and radius

kF =

(
3π2N

V

) 1
3

.

This is called the Fermi sphere and kF is the Fermi wave-number, pF := h̄kF is the
Fermi momentum. The energy of a state with wave-number kF is called the Fermi
energy: for non-interacting electrons the Fermi energy is

εF =
p2F
2m

=
h̄2k2F
2m

=
h̄2

2m

(
3π2N

V

) 2
3

=
1

2
mv2F , (30)

where

vF =
pF
m

=
h̄kF
m

=
h̄

m

(
3π2N

V

) 1
3

is the Fermi velocity. In a simple cubic crystal with a monatomic, monovalent basis

with lattice spacing 5Å for example, N
V =

(
1

5×10−10

)3
m−3 = 8 × 1027m−3 giving vF =

7 × 105m/s ≈ 2 × 10−3c, a remarkably high velocity. Compare this with the thermal

velocity of particles of mass m in a perfect gas: vT =
√

2kBT
m

≈ 3000ms−1 at T = 300K.

The Fermi energy for most metals is about an order of magnitude higher than chemical
energies.

When interactions between electrons and the lattice are included the lattice structure
will distort the Fermi surface away from a sphere to a shape with less symmetry than a
sphere but which reflects the symmetry of the underlying lattice.

At zero temperature all quantum states with 0 ≤ k ≤ kF are filled and all quantum
states with k > kF are empty. At finite temperature thermal fluctuations can kick an
electron with k < kF into a quantum state with k > kF provided ǫ(k)<∼ ǫ(kF ) + kBT ,
leaving a state with k < kF empty. Such an empty state is called a hole.

From (30) the Fermi energy depends on N , conversely N depends on the Fermi energy.
We can determine the density of states for free (non-interacting) electrons at any energy
from

ε =
h̄2

2m

(
3π2Nε
V

) 2
3

⇒ Nε =

(
2mε

h̄2

) 3
2 V

3π2
.

Nε is the total number of quantum states, with energy less then ε, available to an electron.
The density of states is then

D(ε) =
dNε
dε

=
V

2π2

(
2m

h̄2

) 3
2

ε
1
2 =

3

2

Nε
ε
. (31)

Fermi-Dirac distribution function

In order to understand the physics of electrons in metals it is important to know
the probability distribution for the number of electrons expected to have energy ε at any
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given temperature. For a gas of photons, Planck proposed that the photons corresponding
to light with frequency ν = ω

2π
could only carry energy which is an integral multiple of

ε = h̄ω, E = nε, with n = 1, 2, 3, . . . and this notion generalises to other particles, such
as electrons. One subtlety is that for particles that are not simply free or non-interacting,
such as electrons in a solid or particles in a non-ideal gas, the energy can be shifted by a
constant, called the chemical potential µ, so ε → ε− µ. Essentially µ is the amount of
energy needed to add one more particle to a system of N particles, if µ < 0 then particles
are attracted to the system and |µ| is a binding energy, if µ > 0 then particles are pushed
away from the system (chemical potentials are covered in more depth in the statistical
mechanics module).

The Boltzmann distribution for system of particles with allowed energy levels En =
n(ǫ − µ) in thermal equilibrium with a heat bath at temperature T gives the probability
of energy level ε being occupied,

P (En) =
e
−n(ε−µ)

kBT

Z
,

with Z =
∑∞
n=0 e

−n(ε−µ)
kBT chosen13 that the total probability

∑∞
n=0 P (ε) = 1.

Let y = e
− ε−µ

kBT then for bosons, such as photons, Z =
∑∞
n=0 y

n = 1
1−y giving the

distribution function for bosons with angular frequency ω,

fB(ε) := P (ε) =
y

1− y
=

1

e
ε−µ
kBT − 1

, (32)

provided ε > µ. fB(ε) represents the probability of finding a boson with energy ǫ when
the ambient temperature is T — it is called the Bose-Einstein distribution.

For a system of fermionic particles, such as electrons, the basic principle is the same,
except that it must be remembered that each individual term for a given n in the sum
for Z in the Bose-Einstein distribution corresponds physically to n bosons occupying the
same quantum state. As many bosons as one wishes can go into the same energy state,
but the Pauli exclusion states that at most one Fermion can occupy each quantum state,
so for Fermions n = 0 or 1 only, n ≥ 2 is not allowed. This means Z =

∑1
n=0 y

n = 1 + y,
leading to the Fermi-Dirac distribution function for fermions, fF (ε) := P (ε) = y

y+1 or

fF (ε) =
1

e
ε−µ
kBT + 1

. (33)

The difference in sign in the denominators of (32) and (33) is the source a great difference
between the behaviour of Fermions and Bosons at low temperatures.

13
Z is called the partition function for the system.
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If µ < 0 and |µ|
kBT

>> ε
kBT

the 1 in the denominator is irrelevant and both the Bose-
Einstein and the Fermi-Dirac distributions look the same. This is the case in a classical
gas where both reduce to the Boltzmann distribution

f(ε) ≈ e
µ

kBT e
− ε

kBT =
e
− ε

kBT

Z
,

with Z = e
− µ

kBT =
∑
e
− ε

kBT . We can calculate µ assuming that the gas particles are free,
so the allowed energies, ε = 1

2mv
2, are just their kinetic energies at speed v and, in the

classical limit, replace the sum with an integral. Then using (31), with the factor 2 arising
from spin states of an electron removed so V → V

2 ,

Z =

∫

ε

e
− ε

kBT
dNε
dε

dε =
V

4π2

(
2m

h̄2

) 3
2
∫ ∞

0

ε
1
2 e

− ε
kBT dε

=
V

4π2

(
2mkBT

h̄2

) 3
2
∫ ∞

0

u
1
2 e−u du with u =

ε

kBT

=
V

4π2

(
2mkBT

h̄2

) 3
2
√
π

2
= V

(
mkBT

2πh̄2

) 3
2

= e
− µ

kBT .

hence

µ = −3

2
kBT ln (kBT ) + const

is negative.
The Boltzmann distribution is the large T , low density, limit of the distribution —

the classical limit.
When quantum effects are important the 1 in the denominator of equations (32) and

(33) cannot be ignored — roughly speaking this happens when the particle density becomes
large enough for their wave-packets to overlap significantly, that is when the separation
between the particles becomes of the order of, or less than, their de Broglie wave-length.
The Bose-Einstein and Fermi-Dirac distributions, for fixed µ and different T , are plotted
below:

f
Β

Β
ε−µ

Low T

ε

Β
ε−µexp[(     )/k  T]

T=0

High T

µ

k  T/(      )
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T=0

εµ

High T
1/2

fF

1

At T = 0 the Bose-Einstein distribution has no states with ε > µ occupied, the only
occupied states are those with ε = µ. All particles occupy the same quantum state, a
situation known as Bose-Einstein condensation. This phenomenon occurs in superfluids
and superconductors.

At T = 0 the Fermi-Dirac distribution has every quantum state with ε < µ occupied,
fF (ε) = 1 for ε < µ, and every state with ε > µ unoccupied, fF (ε) = 0 for ε > µ.
ε = µ = εF is the Fermi surface. 14

ε εF

D(   )εf  (   )ε
F

T=0

At T = 0 the product fF (ε)D(ε) cuts off at ε = εF and drops to zero.

The distribution of quantum sates in k-space at T = 0 is the interior of a solid ball of
radius kF :

14 Actually the plot of fF (ε) above is produced assuming µ is independent of T . As we have seen this is not a good

assumption for a classical ideal gas (the classical case is best visualised by the high T curves in fB), but is often a good

assumption for low T , in particular when kBT<<µ. As we shall see for a real Fermi gas µ has a slight T dependence

near εF and the curves for fF (ε) at different T do not all cross at exactly the same point.
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For T > 0 some electrons are thermally excited above ε, leaving unoccupied states
below ε. The excited and unoccupied states lie in a band of width kBT around εF .

ε εF

εD(   )ε

Equal areas

k  TB

f  (   )F

T>0

The above graph of fF (ε)D(ε) as a function of ε shows the number of electrons with energy
ε: the total area under the curve is N , the number of electrons in the crystal. The chemical
potential can be determined as a function of T and N by the condition

N =

∫ ∞

0

fF (ε)D(ε)dε =
V

2π2

(
2m

h̄2

) 3
2
∫ ∞

0

ε
1
2

(
e

ε−µ
kBT + 1

)dε. (34)
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Heat capacity of a free electron gas

Classically, an ideal gas of N particles has heat capacity15

CV =
3

2
NkB, (35)

and specific heat

cV =
CV
V

=
3

2

N

V
kB =

3

2
nekB, (36)

where ne = N
V

is the number of electrons per unit volume.16 The observed cV in metals
is only about ∼ 1% of (36), a phenomenon which perplexed nineteenth century physicists
but which, from a more modern perspective, can be qualitatively be understood as being
due to the Pauli exclusion principle. Only those electrons within a distance ∼ kBT of the
Fermi surface are free to contribute to the specific heat, electrons any deeper than kBT
below the Fermi surface have their dynamics ‘frozen’ by the exclusion principle: there are
no unoccupied energy states nearby and so these electrons have no degrees of freedom to
contribute to the specific heat.

To get a quantitative expression for the specific heat due to free electrons in a metal
we first need the internal energy

U(T ) =

∫ ∞

0

εfF (ε)D(ε)dε (37).

The heat capacity is then ∂U
∂T

∣∣
V

but one subtlety is that we need to calculate U(T ) at
constant N , while the right hand side of (37) is a function of µ which in turn depends
on T and N through (34). It is not possible to perform the integral (37) analytically so
we resort to an approximation, but it is a very good approximation. Define the Fermi

temperature, TF by
kBTF = εF .

Typically TF ≈ 50, 000◦ K is a very large temperature and we shall expand U(T ) as a
function T

TF
— this is known as a Sommerfeld expansion. The details are given in an

appendix (Appendix A)

µ

εF
= 1− π2

12

(
kBT

εF

)2

+O

(
kBT

εF

)4

. (38)

This an extremely good approximation: remember εF = kBTF typically corresponds to
a temperature TF ≈ 50, 000◦ K so, even at T = 500◦ K, kBT

εF
is only of order 10−2 and

15 This can be understood in terms of the equipartition theorem: the energy of a free particle is distributed equally

among the three degrees of freedom associated with the three components of momenta. The equipartition theorem of

thermodynamics states that each degree of freedom receives an amount of energy 1
2kBT , so the energy of each particle

is 3
2kBT . The total energy in a gas consisting of N particles is 3

2NkBT and the heat capacity is 3
2NkB .

16 The specific heat is a better representation of the intrinsic characteristics of the metal as it is independent of the

size of the crystal, the heat capacity itself depends on how big the crystal is.

66



(
kBT
εF

)2
is of order 10−4, so µ = εF to one part in 10,000 and the quadratic approximation

to µ(T ) in (38) is accurate to one part in one hundred million.
The integral in (37) can be evaluated using the same techniques as in appendix A.

The calculation is left as an exercise and the answer is

U =
3

5
NεF

(
µ

εF

) 5
2

+
3π2

8
NεF

(
kBT

εF

)2(
µ

εF

) 1
2

+ . . . .

Using the expansion (38) then gives

U =
3

5
NεF +

π2

4
NεF

(
kBT

εF

)2

+ . . . .

The electronic specific heat is now given by

CV =

(
∂U

∂T

)

V

=
Nπ2k2BT

2 εF
+O

(
kBT

εF

)3

.

This explains why electronic heat capacities are only about 1% of the classical value (35),

they are reduced by the factor π2

3
kBT
εF

≈ 10−2 by the exclusion principle. The specific heat
is

cV =
N

V

π2k2BT

2 εF
+O

(
kBT

εF

)3

=
m

h̄2
(ne)

1
3 k2BT

(3π2)
2
3

+ o

(
kBT

εF

)3

, (39)

a formula that is accurate to one part in 10,000 for T ≈ 500◦ K.
The full specific heat of a metallic crystal includes the phonon contribution from

the lattice, ∝ T 3 at low temperatures and 3nkB at high temperatures (the Dulong-Petit
value).17 At very low temperatures the electronic specific heat dominates in metals.

This calculation also has implications for the thermal conductivity κ, since κ =
cvv

2
F τ
3

and cv is reduced by a factor of 1/100 from its naive classical value.

DC conductivity

Consider a segment of metal wire of length d and constant cross-sectional area ∆A.
The electrical resistance, R, depends on the geometry, doubling the length doubles the
resistance and thick wires have less resistance than thin wires: R is proportional to the
length and inversely proportional to ∆A,

R =
d

∆A
ρ,

where ρ is called the resistivity of the metal (it has dimensions of Ohms × length). R is
not intrinsic to the material but ρ is, for this reason ρ is more fundamental than R.

17 Remember that n=N
V is the number of primitive lattice cells per unit volume in the crystal, which is not the same

as ne=
N
V , the number of electrons per unit volume, except for crystals with a monatomic basis of monovalent metals.
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d

A∆

A voltage V applied along the wire will generate a current I proportional to ∆A,

I = j∆A

where j is called the current density, the current per unit area in the wire. This voltage
will give rise to an electric field of magnitude E = V

d
, so Ohm’s law V = IR can be written

Ed = (j∆A)

(
ρd

∆A

)
⇔ E = ρj.

Physicists prefer to work with the conductivity, defined to be the inverse of the resistivity,
σ = 1/ρ, and write j = σE. This should really be written as a vector equation, currents
have a direction associated with them so j is a vector, as is E. For an isotropic conductor

j = σE.

It is a difficult, but important, task to calculate σ for any given material, metal or
semi-conductor, from a knowledge of the microscopic structure at the atomic level. To get
some understanding of the underlying physics, consider the force acting on a charge −e,
such as an electron, due to an applied electric field E: Newton’s second law implies

F = m
dv

dt
= −eE.

If E is constant this immediately integrates to

p(t)− p(0) = −eEt,

where p = mv is the electron’s momentum. In a perfectly pure crystal the electron would
accelerate indefinitely but in a real crystal this acceleration will be impeded by collisions
with phonons (at room temperature) or imperfections in the crystal (more important at
low temperatures, when phonons are scarce). Suppose the electron is stopped in its tracks
by these collisions and denote the average time between collisions by τ , then the average
electron velocity will be v = aτ = − e

mEτ . If the electron number density is n then the
current density is proportional to n,

j = −env =
nee

2τ

m
E = σE,
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from which we derive the DC conductivity in terms of τ ,

σ =
nee2τ

m
. (40)

This is called the Drude formula. It is useful in that it gives an intuitive understanding of
what affects the conductivity, many rapid collisions means τ is small and the conductivity
is low, very few collisions means τ is a long time and the conductivity is high. τ is in
fact a function of temperature, at room temperature τ ∝ 1/T . The conductivity is also
proportional to the electron density, which is reasonable — more electron means more
current. A quantity which reflects how easily the electrons can move, without reference to
the number of electrons is the mobility, µ, defined by18

v = µE ⇔ µ = − σ

nee
.

The minus sign is because the charge on the electron -s −e.
We shall consider AC conductivity in §8.

Wiedemann-Franz law

We can now derive a relation between the electrical and thermal conductivities in
a metal, which follows from the fact that it is mobile electrons that are responsible for
both. Using our expression for thermal conductivity (26) and the electron specific heat

(39), cv = π2

2
k2B
εF
Tne, where the Fermi energy εF is related to the Fermi velocity vF by

εF = 1
2mv

2
F , gives κ =

cvv
2
F τ
3 = π2n

3m kBTτ , we have

κ

σ
=
π2k2B
3e2

T.

The ratio of thermal to electrical conductivities in a metal is proportional to the absolute
temperature of the crystal, with a co-efficient given by known physical constants. His-
torically this relation, known as the Wiedemann-Franz law, was discovered before it was
understood why specific heats in metals were so low, 1% of their expected classical value
— the thermal conductivity is also low for the same reason, Fermi blocking.

Hall effect

The Hall effect occurs in very thin slabs of conducting material placed in a transverse
magnetic field19 when a current is passed through the slab. Discovered in 1879 it was a
very important step in understanding the nature of electric currents.

18 Not to be confused with the chemical potential.
19 Strictly speaking B is the magnetic flux density and the magnetic field is denoted by H. In a vacuum they are

simply proportional to each other, B=µ0H, where µ0 is the magnetic permeability of the vacuum, µ0=4π×10−7 in

SI units. At the moment we do not to worry about this distinction and we shall, somewhat incorrectly, refer to B as

the magnetic field. The distinction will however be important in §8 when we come to discuss magnetic properties of

materials.
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Consider the effect on the analysis above of including a magnetic field. The force on
the electron is given by the Lorentz force law,

F = mv̇ = −e
(
E+ (v ×B)

)
.

For a constant magnetic field in the z-direction, B = Bẑ, and a constant electric field
perpendicular to B, E = Ex̂, this gives

mv̇x = −eE − evyB

mv̇y = evxB

mv̇z = 0.

Combining the first two of these equations implies

v̈x = −e
2B2

m2
vx,

which is the harmonic oscillator equation for vx with frequency ωc = eB
m
, called the cy-

clotron frequency. This is a characteristic frequency for a charged particle moving in a
magnetic field. Solving this equation gives

vx(t) = v0 cos(ωct)

where v0 is a constant and, using this in the vy equation above, gives

v̇y(t) = v0ωc cos(ωct) ⇒ vy(t) = v0 sin(ωct) + a,

with a a constant of integration. Then putting this form of vy(t) into the equation for v̇x
above yields

mv̇x = −mωcv0sin(ωct) = −eE − eB
(
v0 sin(ωct) + a

)
,

which fixes a to be the ratio a = −E
B . Finally v̇z = 0 implies that vz is a constant and the

motion of the electron is given by

v(t) = v0
(
cos(ωct)x̂+ sin(ωct)ŷ

)
− E

B
ŷ + vz ẑ

which integrates to

r(t) =
v0
ωc

(
sin(ωct)x̂− cos(ωct)ŷ

)
− E

B
tŷ + vztẑ,

where we have chosen the origin so that r(0) = 0. If otherwise unhindered the electron
performs a circular motion in the x − y plane superimposed on a constant drift in the
direction vz ẑ− E

B ŷ.
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We can now include the effect of collisions by adding a term Fc = −m
τ v to the Lorentz

force,

mv̈ = −m
τ
v − e

(
E+ (v ×B)

)
.

Again with B = Bẑ in the z-direction, but with a more general E, this can be written in
components as

mv̇x = −e(Ex + vyB)− mvx
τ

mv̇y = −e(Ey − vxB)− mvy
τ

mv̇z = −eEz −
mvz
τ

.

Rather than solving these equations in complete generality, we just look for a steady state
solution with v̇ = 0, which will be sufficient for a discussion of DC currents. Such a
solution is

vx = −τe
m
Ex − ωcτvy

vy = −τe
m
Ey + ωcτvx

vz = −τe
m
Ez.

Now focus on a thin slab of conducting material in the x− y plane. The electrons are
confined to the plane, so we shall assume vz = 0 and Ez = 0. Consider a rectangular slab
with its edges aligned in the x and y directions. If a current is passed through the slab in
the x-direction, then vy = 0 as well and

Ex = −mvx
τe

, Ey = ωc
m

e
vx = −ωcτEx

so

Ey = −eB
m
τEx.

The current density is the charge passing unit area in unit time, which is −e times
the number of electrons passing unit area in unit time. The latter is nev, where ne is the
number of electrons per unit volume, so

j = −enev =
nee

2τ

m
Exx̂.

From this we see that the conductivity σ = nee
2τ

m is just the same as in the B = 0 case
above, but now we no longer have the vector relation j ∝ E, because Ey 6= 0 and there
is no component of the current in the y-direction. What is happening here is illustrated
below, where the green arrows indicate what the electron trajectories would be if Ey were
zero:
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As the electrons are forced through the slab by Ex the Lorentz force pushes them in
the −y direction and their trajectories are bend toward the edge of the sample, but they
cannot escape the confines of the slab so a negative charge builds along the top edge of the
slab. At the same time electrons are depleted from the lower edge. This charge generates
a voltage in the y-direction which builds up until there is a Coulomb force in the positive
y-direction (Ey 6= 0) which exactly cancels the Lorentz force due to the magnetic field and
the electrons just move in straight lines in the x-direction. This voltage is called the Hall
voltage. Note that the Hall voltage would have the opposite sign if the particles carrying
the current had a positive electric charge (blue arrows above). By measuring the sign of
the Hall voltage we can tell that electrons in metals carry a negative charge.

We have

jx =
nee

2τ

m
Ex = −nee

B
Ey ⇒ Ey = RHBjx

where

Rh = − 1

nee

is intrinsic to the material and is called the Hall co-efficient. The sign of the Hall co-
efficient depends on the sign of the electric charge on the charge carriers (it is negative for
electrons) and we can also obtain ne directly by measuring RH . For example silver has
RH = −9×10−11 m3C−1 from which ne = 7×1028 m−3. Some materials do have positive
Hall co-efficients, for example aluminium has RH = 1.0 × 10−10 m3C−1 and so behaves
as though the current is being carried by positive charges. This apparently anomalous
behaviour is explained below in terms of energy bands.

Energy Bands and Bloch’s Theorem

The crystalline structure of metals puts strong constrains on the form of the electron
wave-functions. Again, for simplicity, we consider one-dimension first. Model the motion
of an electron moving in a one-dimensional crystal by demanding that the electron moves
in a potential that is periodic with period a, U(x) = U(x+ a). Denote the electron wave-
function by ψ(x). The electron density n(x) ∝ |ψ(x)|2 is also periodic, n(x) = n(x+a), so
|ψ(x)|2 = |ψ(x+ a)|2, but this does not necessarily mean that ψ(x) itself is periodic with
period a, only that it is periodic up to a phase ψ(x+a) = eiφψ(x). However we can impose
periodic boundary conditions in ψ over the whole crystal, ψ(x+Na) = ψ(x) where Na is
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the size of the crystal (for large N the boundary conditions do not affect the behaviour in
the interior of the crystal very much).

We now argue that φ is independent of position and can only have a discrete set of
possible values. The Schrödinger equation for a state with energy E is

− h̄2

2m
ψ′′(x) + U(x)ψ(x) = Eψ(x), (41)

and lattice periodicity requires

− h̄2

2m
ψ′′(x+ a) + U(x+ a)ψ(x+ a) = Eψ(x+ a),

⇒ − h̄2

2m
ψ′′(x+ a) + U(x)ψ(x+ a) = Eψ(x+ a).

In particular ψ(x) and ψ(x+a) satisfy the same second order ODE with the same boundary
conditions, hence they are linearly dependent (in general the real and imaginary parts of
ψ(x) are linearly independent). Thus ψ(x + a) = cψ(x) with c a (possibly complex)

constant. Since ψ(x + Na) = ψ(x) we conclude that cN = 1, hence c = eiφ = e
2πij
N

where j = 0, . . .N − 1 is an integer with N possible values (or, if N is even, we can use
j = −N

2
, . . . , N

2
). The integer j labels different solutions of the Schrödinger equation: let

k = 2πj
Na

then we denote the eigenfunction associate with any particular choice of j by
ψk(x). These eigenfunctions have the property that

ψk(x+ a) = eikaψk(x). (42)

k is a wave-vector and if j = −N
2
, . . . , N

2
then −π

a
≤ k ≤ π

a
and k takes N discrete values

in the first Brillouin zone of the crystal. For large N the allowed values of k are crowded
very close together and approximate a continuum as N → ∞, but they never stray outside
the first Brillouin zone.

An example of a function with the property (42) is eikx, though this is not a solution

of Schrödinger’s equation above unless U = 0, in which case E = h̄2k2

2m and h̄k has the
physical interpretation of being the electron’s momentum.

It is not possible to solve the Schrödinger equation (41) in closed form for a general
periodic potential U(x). Nevertheless the assumed periodicity of the potential allows a sim-
plification and we shall prove a theorem, called Bloch’s theorem, that the eigenfunctions
can always be written in the form20

ψk(x) = eikxBk(x). (43)

20 Strictly speaking the one-dimensional version quoted here is Floquet’s theorem. Bloch proved the three-

dimensional version quoted later.
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where k lies in the first Brillouin zone and Bk(x) = Bk(x+ a) is a periodic function. This
automatically satisfies (42).

The proof of Bloch’s theorem is instructive as it sheds light on the general structure
of the energy spectrum of electrons in a crystal. Let ψ(x) be an eigenfunction of the
Schrödinger equation with energy E,

Ĥψ(x) = Eψ(x),

where the Hamiltonian operator is Ĥ = − h̄2

2m
d2

dx2 + U(x). Any ψ(x) can be expanded as a
sum of plane waves

ψ(x) =
∑

q

b(q)eiqx =
∞∑

s=−∞
bse

2πis
Na x, (44)

where the co-efficients b(q) = bs are complex constants. With periodic boundary conditions
ψ(x + Na) = ψ(x), the allowed values of q = 2πs

Na are necessarily discrete with s taking
on all integer values between −∞ and ∞. Unlike phonons the geometry puts no bound
on the electron momentum, electrons can have wavelengths much shorter than the lattice
spacing.21

In contrast the potential U(x) is periodic with period a, U(x + a) = U(x), so its
Fourier decomposition involves only reciprocal lattice vectors G = 2πh

a ,

U(x) =
∑

G′

Ũ(G′)eiG
′x =

∞∑

h′=−∞
Ũh′e

2πih′

a x.

Let E(0)(q) = h̄2q2

2m
be the energy of a free electron with wave-vector q (i.e. the energy for

U = 0).
The Schrödinger’s equation can be written

∑

q

E(0)(q)b(q)eiqx +
∑

G′,q′

Ũ(G′)b(q′)ei(q
′+G′)x =

∑

q

E b(q)eiqx

⇒
∑

q

(
E(0)(q)− E

)
b(q)eiqx +

∑

G′,q

Ũ(G′)b(q −G′)eiqx = 0, where q = q′ +G′,

⇒
(
E(0)(q)− E

)
b(q) +

∑

G′

Ũ(G′)b(q −G′) = 0. (45)

Now Ũ(G′) are given complex numbers, they are determined by U(x), so this is a set of
linear equations for the unknown numbers b(q). Up till now q = 2πs

Na
and s could have any

integral value but it is often convenient to add a reciprocal lattice vector to q so as to force
it into the first Brillouin zone: for any q choose G = 2πh

a
so that k = q−G lies in the first

21 There is a dynamical limit, though — the smaller the wave-length the more energetic the electrons are and if the

wave-length is very small the electrons can be so energetic that they are not confined to the crystal. The happens when

the energy of the electron becomes comparable with the work function of the material, typically a few electron volts.
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Brillouin zone.22 To emphasise the distinction between the wavevector k, which lies in the
first Brillouin zone, and G, which is a reciprocal lattice vector, we write b(k+G) = bk(G).
With this notation (45) reads

{
E(0)(k +G)−E

}
bk(G) +

∑

G′

Ũ(G′)bk(G−G′) = 0.

Then, with G′′ = G−G′, we have

{
E(0)(k +G)−E

}
bk(G) +

∑

G′′

Ũ(G−G′′)bk(G′′) = 0. (46)

This is called the central equation, though it is actually a set of coupled linear equations
for the bk(G). Alternatively it can be written, using G = 2πh

a and the notation Ũ(G) =

Ũh,
23 {

E(0)

(
k +

2πh

a

)
− E

}
bk(h) +

∑

h′′

Ũh−h′′bk(h
′′) = 0. (47)

The sum in (47) is over the integers and this form shows that the equation can be written
as an infinite matrix equation



. . .
...

...
...

· · · E(0)
(
k + 2π

a

)
−E(k) Ũ1 Ũ2 · · ·

· · · Ũ−1 E(0)(k)−E(k) Ũ1 · · ·
· · · Ũ−2 Ũ−1 E(0)

(
k − 2π

a

)
− E(k) · · ·

...
...

...
. . .







...
bk(1)
bk(0)
bk(−1)

...




= 0.

(48)

Remember Ũ−h = Ũ∗
h for a real potential. For simplicity we have chosen to shift the

potential by a constant so that U0 = 0, this simply adds an overall constant to the energy
and does not change any physics. In principle this is an infinite matrix equation, but in
practice we can cut |h| off at some large but finite value with negligible error. Physically,
if the momentum of the electron gets too large it will escape from the crystal anyway and
the whole description breaks down.

The eigenvalues are determined by requiring that the matrix has zero determinant,

so as to ensure that a non-zero solution, a non-zero eigenvector




...
bk(1)
bk(0)
bk(−1)

...



, exists. For a

22 For a given q this is a unique decomposition, there is only one k in the first Brillouin zone and one reciprocal

lattice vector G that can satisfy this. In 1-dimension this is completely analogous to breaking a fractional number up

into an integer and a remainder: h is the integer, obtained by rounding the fraction up or down depending on whether

the fractional part is greater than or less than 1
2 , − 1

2<
a
2π k<

1
2 is the remainder.

23 With a slight abuse of notation we also write bk(G)=bk(h) where G= 2πh
a ).
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given potential, and hence given Fourier co-efficients Ũh, calculating the energy eigenvalues
and their associated eigenvectors still involves calculating the determinant of a very large
matrix. Fortunately it is often the case that many of the off-diagonal components are very
small, in real situations it is usually the case that |Ũ1| >> |Ũ2| >> |Ũ3| >> · · ·, but before
looking at some explicitly solvable cases we pause to prove Bloch’s theorem.

The structure of (48) shows that there are energy eigenfunctions associated with any
given value of k (indeed there are many). From (44) and the above analysis we can write
an energy eigenfunction associated with any particular value of k as

ψk(x) =

∞∑

h=−∞
bk(h)e

i(k+ 2πh
a )x = eikx

∞∑

h=−∞
bk(h)e

2πih
a x := eikxBk(x),

where the Bloch function Bk(x) =
∑∞

h=−∞ bk(h)e
2πih

a x is, by construction, periodic
Bk(x+ a) = Bk(x). This is Bloch’s theorem, (43).

Of course, since Bk(x) is periodic, it has a Fourier expansion

Bk(x) =
∑

G

B̃k(G)e
iGx,

with G = 2πh
a

and we see that the wave-function co-efficients, bk(G) are the Fourier co-
efficients of the Bloch function.

Note that h̄k is not the electron momentum, that would correspond to the eigenvalue
of the operator p̂ = −ih̄ d

dx and ψk(x) is not an eigenfunction of p̂ in general (unless

U(x) = 0). Indeed −ih̄ dψk(x)
dx 6= h̄kψk(x) unless Bk(x) is independent of x. In a crystal

electron energy eigenfunctions do not have a specific momentum, a crystal does not have
translational invariance under infinitesimal translations, it is only invariant under finite
lattice transformations, so momentum is not conserved. The Hamiltonian Ĥ does not
commute with the momentum operator p̂, so these two operators cannot be simultaneously
diagonalised — an eigenstate of the Hamiltonian cannot simultaneously be an eigenstate
of momentum, it must be a linear combination of different momenta states. Nevertheless
h̄k is a momentum of sorts, it is called the crystal momentum, but it is not equal to
the electron’s momentum in general. We shall give a physical interpretation of the crystal
momentum later.

Free Electron Approximation

To get some feeling for the behaviour of the solution of (47) consider the crudest

possible approximation, just setting all the Ũh to zero. That is U(x) = 0 in the Schrödinger
equation and we are dealing with free electrons. To solve (47) choose a specific value of h
and k and set

E = E(0)

(
k +

2πh

a

)2

=
h̄2

2m

(
k +

2πh

a

)2

,

and the eigenvectors for a specific choice of h are bk(h) 6= 0 with all other bk zero. Remem-
ber that k is restricted to lie in the first Brillouin zone −π

a ≤ k ≤ π
a . The energy spectrum
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is shown below, the energy is a multivalued function of k and there are different bands of
energy labelled by n = |h|: band one is n = 0, band two is n = ±1, band three is n = ±2
etc. The allowed energy in each band is a function of k and the band is identified with a
subscript called the band index, En(k).

The energy spectrum is the same as that of a single parabola, E = h̄q2

2m with −∞ <

q < ∞, but it is represented as different pieces all with k = q + 2πh
a and h chosen so that

−π
a
≤ k ≤ π

a
. This trick, of knocking q into the first Brillouin zone by adding a reciprocal

lattice vector to it, is called the reduced zone scheme. It is completely equivalent to a

single energy band with E = h̄q2

2m and −∞ < q < ∞, which is called the extended zone
scheme. It is a matter of taste which description is used, though the reduced zone scheme
is often more convenient.

k−π/ π/aa

Band 1

Band 2

Band 3

In three-dimensions the story is essentially the same, but the notation gets a little
messier. Solutions of the Shrödinger equation

− h̄2

2m
∇2ψ(x) + U(x)ψ(x) = Eψ(x), (49)

can be expanded in plane waves as

ψ(x) =
∑

q

b(q)eiq.x,

with constant co-efficients b(q), and the sum is over three-dimensional wave-vectors q. We

can impose periodic boundary conditions in three dimensions, ψ
(
x+Niai

)
= ψ(x), where
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i = 1, 2, 3 and Ni are three large integers and ai are primitive lattice vectors — this is a
natural generalisation of periodic boundary conditions in one-dimension and are known as
Born - von Karman boundary conditions. In a crystal of volume V = N1N2N3Vc = NVc,
where Vc is the volume of a primitive cell. These boundary conditions make the allowed
values of q a discrete set, though the allowed values get more and more dense and closer
together as N → ∞.
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The Central Equation in 3-dimensions

Let ψ(x) be an eigenfunction of the Schrödinger equation (49) with energy E. The
symmetries of the lattice dictate that U(x) is periodic in all three primitive lattice vectors,
U(x) = U(x+ a1) = U(x+ a2) = U(x+ a3), so it can be decomposed into Fourier modes

U(x) =
∑

G′

Ũ(G′)eiG
′.x

where the sum is over all reciprocal lattice vectors and the Fourier co-efficients, Ũ(G′), are

complex numbers. Let E(0)(q) = h̄2q.q
2m

be the energy of a free electron with wave-vector
q (i.e. the energy for U = 0).

The Schrödinger equation (49) can be written

∑

q

E(0)(q)b(q)eiq.x +
∑

G′,q′

Ũ(G′)b(q′)ei(q
′+G′).x = E

∑

q

b(q)eiq.x

⇒
∑

q

(
E(0)(q)−E

)
b(q)eiq.x +

∑

G′,q

Ũ(G′)b(q−G′)eiq.x, = 0 where q = q′ +G′,

⇒
(
E(0)(q)− E

)
b(q) +

∑

G′

Ũ(G′)b(q−G′) = 0. (50)

Now Ũ(G′) are given complex numbers, they are determined by U(x), so this is a set of
linear equations for the unknown co-efficients b(q). Up till now q could be arbitrarily large
but, as in the one-dimensional case, it is often convenient to add to it a reciprocal lattice
vector so as to force it into the first Brillouin zone: for any q in our discrete set choose G so
that k = q−G lies in the first Brillouin zone (for a given q this is a unique decomposition,
there is only one k in the first Brillouin zone and one reciprocal lattice vector G that can
satisfy this). Again to emphasise the distinction between the wave-vector k, which is a
wave-vector in the first Brillouin zone, and G, which is a reciprocal lattice vector, we write
bk+G = bk(G) and write (50) as

{
E(0)(k+G)− E

}
bk(G) +

∑

G′

Ũ(G′)bk(G−G′) = 0.

Then, with G′′ = G−G′, we have

{
(E(0)(k+G)− E

}
bk(G) +

∑

G′′

Ũ(G−G′′)bk(G′′) = 0. (51)

This is the three-dimensional central equation, the three-dimensional analogue of (46).
The situation in three-dimensions is more complicated, even for free electrons. Then

the reciprocal lattice vectors are labelled by three integers h, k and l (there is a clash of
notation here, k is an integer in the notation (hkl) denoting a reciprocal lattice vector —
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this should not be confused with the length of the wave-vector |k|, hopefully it will be
clear which is meant from the context). For a simple cubic lattice, for example,

Ghkl =
2π

a
(hx̂+ kŷ + lẑ)

and for a free electron, U(x) = 0, the allowed energies are

E(k) = EG(k) =
h̄2

2m
(k+G)2

=
h̄2

2m

{
(kx +Gx)

2 + (ky +Gy)
2 + (kz +Gz)

2
}

=
h̄2

2m

{(
kx +

2πh

a

)2

+

(
ky +

2πk

a

)2

+

(
kz +

2πl

a

)2
}
.

The first few energy bands are listed in the table below, for wave-vectors with ky = kz = 0:

hkl 2m
h̄2 Ehkl(0, 0, 0)

2m
h̄2 Ehkl(kx, 0, 0)

000 0 k2x

100, 100
(
2π
a

)2 (
kx ± 2π

a

)2

010, 010, 001, 001
(
2π
a

)2
k2x +

(
2π
a

)2

These energy bands are shown graphically below, in the reduced zone scheme,

k−π/ π/aa

Band 1

Band 3

Band 2

Band 4
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You can amuse yourself by including ky and kz or by constructing the energy band
structure for free electrons in other crystal structures such as FCC or BCC.

Now we shall go beyond the free electron approximation and include the effects of
a non-zero potential U(r). For simplicity consider a one-dimensional crystal with central
equation (48) and focus on the 2 × 2 sub-matrix obtained by restricting to h = 0 and
h = −1, (

E(0)(k)−E Ũ1

Ũ−1 E(0)
(
k − 2π

a

)
− E

)(
bk(0)
bk(−1)

)
=

(
0
0

)
(52).

For a non-trivial solution of the central equation, with bk(0) and bk(−1) not both zero, the
determinant of the 2× 2 matrix must vanish, giving

E2 −
{
E(0)(k) + E(0)

(
k − 2π

a

)}
E +E(0)(k)E(0)

(
k − 2π

a

)
−
∣∣Ũ1

∣∣2 = 0

(remember Ũ−1 = Ũ∗
1 for a real potential). Solving for the eigenvalues E gives E(k), a

dispersion relation. Using E(0)(k) = h̄2

2mk
2, there are two possibilities,

E(k) =
h̄2

m




k2

2
+
π

a

(π
a
− k
)
± π

a

√
(
k − π

a

)2
+

(
ma

πh̄2

)2 ∣∣∣Ũ1

∣∣∣
2



 . (53)

A consequence of this 2×2 approximation (52) to the full central equation (48) is that
the latter is clearly symmetric under k → −k, while (52) is not. The true energy should
be an even function of k, but (53) is not. We shall remedy this defect later but, for the
moment, just concentrate on 0 ≤ k ≤ π

a .

If 0 <
∣∣∣Ũ1

∣∣∣ << π2h̄2

a2m , then the second term under the square root in (53) is small

relative to the first, unless k is close to π
a , and the two roots are

E(k) =





h̄2k2

2m

h̄2

2m

(
k − 2π

a

)2
+ o
(

|Ũ1|
π

)2
, for k << π

a .

We see that Ũ1 doesn’t make much difference for k << π
a , but it has a significant effect

when k is on or near the first Brillouin zone boundary. In particular for k = π
a , equation

(53) gives

E
(π
a

)
=

h̄2

2m

(π
a

)2
±
∣∣Ũ1

∣∣

a ‘gap’ has opened up in the energy spectrum, at k = π
a
of magnitude 2

∣∣Ũ1

∣∣. This is called
a band gap and is a generic feature of solutions of (48), the periodic potential U causes
such gaps to open up in the spectrum.
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The two solutions (53) are plotted below,

k/aπ

}

E(k)

2|U |
~

1

Now focus on the 2×2 sub-matrix of the central equation (48) obtained by restricting
to h = +1 and h = −1.

(
h̄2

2m

(
k + 2π

a

)2 −E Ũ2

Ũ−2
h̄2

2m

(
k − 2π

a

)2 − E

)(
bk(1)
bk(−1)

)
= 0. (54)

Again demanding a non-zero solution for bk(1) and bk(−1) requires that the determinant
of the associated 2× 2 matrix vanishes,

∣∣∣∣∣
h̄2

2m

(
k + 2π

a

)2 − E Ũ2

Ũ−2
h̄2

2m

(
k − 2π

a

)2 −E

∣∣∣∣∣ = 0.

The solutions are

E(k) =
h̄2

m




k2

2
+

2π2

a2
± 4π

a

√

k2 +

(
ma

2πh̄2

)2

|Ũ2|2


 .

Now there is a gap between the two bands at k = 0,

E(0) =
2π2h̄2

ma2
± 2|Ũ2|.

The structure of these two bands is shown below
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2

~
2|U  |

E(k)

k/aπ/a−π

{

The above results can be combined by focusing on the 3× 3 sub-matrix of the central
equation (48) obtained by restricting to h = +1, 0 and −1. We now demand that the
determinant of the matrix




h̄2

2m

(
k + 2π

a

)2 − E Ũ1 Ũ2

Ũ∗
1

h̄2

2m
k2 −E Ũ1

Ũ∗
2 Ũ∗

1
h̄2

2m

(
k − 2π

a

)2 −E




must vanish. This gives a cubic equation for E(k), which can be solved analytically to find
the three roots, all of which are even functions E(k) = E(−k), but the explicit expressions
are not very illuminating. It is more instructive to plot the three functions, using Maple

or Mathematica for example. Typically |Ũ2| and |Ũ1| << π2h̄2

a2m
and the spectrum is shown

below. There are three bands exhibiting the band gaps found above and, comparing with
the figure on page 1, we see that Ũ2 has split the second energy band of the free spectrum
(the blue band on page 1) into two bands here.
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E(k)

k/aπ/a−π

In the extended zone scheme the above spectrum looks like a piecewise parabola with
jumps at the Brillouin zone boundaries. The gaps can be thought of as being due to
reflection of electrons off the zone boundaries.
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E(q)

q/a3π/a2π/aπ−2π /a −π /a−3π /a

Sometimes it is convenient to continue the reduced zone scheme to wavevectors outside
the first Brillouin zone to get an infinite number of copies of the reduced zone scheme with
period 2π

a — this is called the periodic zone scheme.
To gain a deeper understanding of the band structure for electrons in metals consider

the energy eigenfunctions in the 2 × 2 matrix equation (52). For simplicity, assume that

Ũ1 is real, Ũ∗
1 = Ũ1, and negative so that U(x) is has minima at x = na, corresponding to

attractive ion cores at x = na. We can determine the eigenvectors

(
bk(0)
bk(−1)

)
by putting

the eigenvalues (53) into (52). At the zone boundary, k = π
a
, denote the eigenvalues by

E±, with E+ > E−,

E± =
h̄2

2m

(π
a

)2
± |Ũ1| ⇒ E(0)

(π
a

)
− E± = ∓|Ũ1|

and the eigenvectors are determined by
(
∓|Ũ1| −|Ũ1|
−|Ũ1| ∓|Ũ1|

)(
bπ

a
(0)

bπ
a
(−1)

)
= 0.

The solutions are
bπ

a
(0) = ∓bπ

a
(−1)

which determines the wave-function ψk(x) =
∑
G bk(G)e

i(k+G)xat k = π
a . In this approxi-

mation there are only two terms in the sum

ψπ
a
(x) =

0∑

h=−1

bπ
a
(h)ei

(
π
a+ 2πh

a

)
x = bπ

a
(0)
(
e

iπ
a ∓ e−

iπ
a

)
:= ψ±(x).
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Hence the energies and associated wave-functions are

E− = E(0) − |Ũ1|, ψ−(x) ∝ cos
(πx
a

)

E+ = E(0) + |Ũ1|, ψ+(x) ∝ sin
(πx
a

)
.

The energy eigenstates form standing waves as the electrons are reflected off the zone
boundaries. The higher energy state, E+, has the electron wave-function concentrated
mid-way between the positive ions, at x =

(
n+ 1

2

)
a, while the lower energy state, E−,

has the electron wave-function concentrated at the positive ions, at x = na, where n is an
integer. This is because the negatively charged electrons are attracted to the positively
charged atomic cores (green in the figure below).

x

Coulomb

V(x)

|ψ (x)|

(x)||ψ

−

+

2

2

a 2a 3a

V            (x) 

In this illustrative example the attractive Coulomb potential (blue above) is modelled by a

periodic potential V (x) = −V0 cos
(
2πx
a

)
with Ũi = 0 for i 6= ±1 and Ũ1 = −V0

2
(red). The

lower energy state electron wave-function (solid black line) is attracted to the potential
minima at x = na and hence peaks there. The higher energy state wave-function (dotted
black line) has a minimum at the potential minima and a maximum at the potential
maxima.

In three-dimensions the electron wave-function is periodic in three directions, ψ(r) =
ψ(r + N1a1) = ψ(r + N2a2) = ψ(r + N3a3) and the the details are somewhat more
complicated, but the basic concepts are the same. There can be different band structures
in different directions.

Fermi surfaces for metals

The dynamics of mobile electrons in crystals is greatly affected by the fact that they
are fermions and fermions must obey the Pauli exclusion principle — no two fermions can
occupy the same quantum state.
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Again consider a one-dimensional crystal with length L = Na and N sites. The
allowed wavevectors in the first Brillouin zone are k = 2πj

Na
, with j = ±1 . . . ,±N

2
(assumeN

is even, when N is very large this doesn’t matter) and they form a discrete set with spacing
∆k = 2π

L
= 2π

Na
between allowed states. For free electrons the de Broglie relation between

momentum and wavevector in quantum mechanics, p = h̄k, implies that there are also N
allowed momentum states p = 2πh̄j

Na
, with one momentum state in each interval ∆p = 2πh̄

Na
in momentum space. Since an electron has spin one-half it has two spin states and each
momentum state can accommodate at most two electrons, one spin-up and one spin-down.
If the energy is an even function of momentum, E(−p) = E(p), and is independent of spin
then there are four quantum states for each allowed value of the energy, ±p, spin-up and
spin-down.

In a monovalent metal crystal with a monatomic basis (e.g. Na or K) only the single
electron in the outer electronic shell of the atom is mobile in the metal, so there is one
mobile electron per atom or one mobile electron per lattice site. In a divalent metal there
would two mobile electrons per atom and, if the basis is monatomic, two mobile electrons
per lattice site. Consider a monatomic crystal of a monovalent metal, so there are N
mobile electrons. Imagine starting with no mobile electrons and adding them to the metal
one by one. The lowest energy, with four quantum states, is filled first, once that is full, a
fifth electron has to go into the next available energy state, that is the next energy level
above the lowest one, because it is excluded from the lowest energy by the Pauli exclusion
principle. Continue in this way until all N electrons have been used up and the lowest
N
4

energy states are full. The electrons in the topmost filled energy state will have a

momentum |pF | = h̄kF with kF
∆k = N

4 where ∆k = 2π
Na , so

kF =
π

2a
.

The Fermi wavevector, kF , is half-way to the first Brillouin zone boundary (this factor of
two is because of spin degeneracy). The Fermi momentum associated with kF is

pF := h̄kF =
πh̄

2a
,

and the Fermi energy is EF = E(pF ). For free electrons, for example,

EF =
p2F
2m

=
h̄2π2

8ma2
(55)

but the concept of the Fermi momentum and the Fermi energy is valid for any dispersion
relation.

The energy levels are sketched below. For any finite N the allowed k-values are always
discrete but as N increases the allowed states crowd closer an closer together as ∆k gets
smaller and smaller. As the number of atoms, N , increases the number of mobile electrons
also increases in just the right way so that the maximum wavenumber, kF , and the top
filled energy level, EF , are independent of N . We can even let N → ∞, giving a continuum
of states but still with the same Fermi momentum pF = h̄π

2a and Fermi energy EF = E(pF ).
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The Fermi momentum and Fermi energy are intrinsic to the microscopic crystal structure
and are independent of the crystal size — this is an important point, if this were not the
case they would not be such useful concepts.

kπ /aπ/2a

k∆

E(k)

E F

The above sketch is specific to a monovalent, monatomic basis. For a metal with either
a divalent monatomic basis or a monovalent diatomic basis there are 2N electrons in a
crystal with N cells, but the same number of momentum states, so the Fermi wavevector
reaches all the way to edge of the first Brillouin zone, kF = π

a
,

E F

kπ /a

E(k)

In two dimensions there is a whole grid of allowed points in two-dimensional k-space,
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spanned by the two components of the wavevector, kx and ky. Consider a two-dimensional
square lattice with lattice spacing a, N1 cells in the x-direction and N2 cells in the y-
direction, so the total number of cells in the crystal is N = N1N2 and the area of the
crystal is Na2. For simplicity we shall choose N1 = N2, so N = N 2

1 , but the changes for
N1 6= N2 are pretty straightforward. The spacing of allowed states in both the kx-direction

and the ky-direction is 2π
N1a

, so there is one state per area
(

2π
N1a

)2
=
(

4π2

Na2

)
:= ∆2k in k-

space. If the dispersion relation is rotationally symmetric and E(p) depends only on the
magnitude of the momentum p and not its direction, then the quantum states will fill up

a disc in two-dimensional momentum space. For example for free fermions E(p) = p2

2m
and

the filled states form a disc of radius pF in momentum space. The radius of this disc is
independent of N and, when N is very large we can think of the distribution of states as
a continuum.

For a monovalent monatomic basis the area of this disc (the Fermi disc) in the space

of wavevectors is one-half the area of the first Brillouin zone24 which is 1
2
4π2

a2 = 2π2

a2 . Hence

the Fermi disc has radius kF given by πk2F = 2π2

a2
, or kF =

√
2π
a

. The reciprocal lattice
for a simple cubic lattice with lattice spacing a is another simple cubic lattice with lattice
spacing 2π

a
and the first Brillouin zone is a square with −π

a
≤ kx ≤ π

a
and −π

a
≤ ky ≤ π

a
.

Since
√
2π
a = 0.7979πa <

π
a the Fermi disc lies entirely withing the first Brillouin zone.
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p

Note that the number of states with energy EF is the circumference of the disc divided by
the average separation between two states in k-space, which we can take to be

√
∆2k, and

24 Again the factor of 1
2 is due to electron spin — there are two quantum states for every allowed momentum state.
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again multiply by two for spin. For large N

2

(
2πkF√
∆2k

)
= 2

{
(2π)2/3

a(
2π√
Na

)
}

=
2
√
N

(2π)1/3
,

and so grows like
√
N = L

a
, linearly with the size of the crystal. This is in marked contrast

to the one-dimensional case were the number of states with energy EF is always only four,
two spin states for k = ±π

a
.

For a divalent metal there are twice as many mobile electrons for the same number of
lattice cells and the area of the Fermi disc is doubled, the radius therefore increases by

√
2

to kF = 2
√
π
a = 1.128πa >

π
a and the Fermi disc extends outside of the first Brillouin zone

into the second zone.
In three dimensions consider a crystal of volume V and a simple cubic lattice structure

with lattice spacing a. For simplicity we assume the crystal is a cube of size L, with edges

aligned with the crystal axes, so V = L3 and the number of primitive cells is N = L3

a3 (for
large N the overall shape of the crystal is not important, it is only N that matters). There

is one momentum state state per volume ∆3k =
(

2π
L

)3
= 8π3

V
in wavevector space and, for

N large we picture the allowed states as sequentially filling a sphere in k-space of volume
4π
3 k

3
F , called the Fermi sphere, with

N = 2

(
4π
3
k3F
)

∆3k
⇒ 4πk3F

3
= 4π3N

V
(56)

(again the factor of 2 is for spin) giving kF = (3π2nc)
1
3 = (3π2)

1
3

a ≈ 0.985
(
π
a

)
< π

a where

nc := N
V

= 1
a3

is the number of primitive cells per unit volume. For a free electron

dispersion relation, E = p2

2m
, this give the Fermi energy

EF =
h̄2

2m
(3π2nc)

2
3 (57)

Since kF = 0.985
(
π
a

)
the Fermi surface does not extend as far as the edge of the first

Brillouin zone at k = π
a
, but it almost does and any slight distortion of it can easily send

part of the Fermi surface into the second Brillouin zone.
The number of states with energy EF in this case is twice the area of the Fermi sphere

divided by the average area of a single state in k-space when projected onto the sphere,
which we can take to be (∆3k)2/3 giving

2

{ (4πk2F
3

)

(∆3k)
2
3

}
= 2

{
4π
3
( 3π

2

a3
)2/3

}

(
8π3

Na3

)2/3 = 2
(π
3

) 1
3N 2

3 = 2
(π
3

) 1
3
(L
a

)2
,

quadratically with the size of the crystal.
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For a divalent metal with a monatomic basis, such as magnesium for example, there
are two mobile electrons for every primitive cell which doubles the density of electrons and
doubles the volume of the Fermi sphere (56), increases kF by a factor 2

1
3 to kF = (6π2nc)

1
3

and increases the Fermi energy by a factor 2
2
3 .

Since the boundary of the first Brillouin zone for a simple cubic lattice with lattice

spacing lies at k = π
a
, the Fermi surface of a monovalent metal kF = (3π2)

1
3

a
≈ 3.09

a
< π

a

lies inside the first Brillouin zone. For a divalent metal kF = (6π2)
1
3

a
≈ 3.90

a
> π

a
and the

Fermi surface extends into the second Brillouin zone.
The concept of the Fermi surface is of central importance in understanding the dy-

namics of electrons in metals. A crystal with inter-atomic spacing a = 4 Å = 4× 10−10m
has Fermi energy EF = 1.5× 10−17J ≈ 94eV , so an electron deep within a Fermi sphere
has no empty quantum states near it, its energy must change by at least ≈ 90 eV in order
for it to change quantum state. Any interaction with neighbouring electrons, phonons,
photons or anything else leaves it completely unaffected unless the energy transfer is of
order 90 eV . This is a very large energy, for example the thermal energy of an electron at
room temperature is of order kBT = 4× 10−21 J ≈ 0.02 eV << EF . This means that an
electron deep within the Fermi sphere is essentially frozen out of all the dynamics. Only
electrons near the Fermi surface, in a thin shell of thickness kBT , or about 1% of the radius
of the sphere in momentum space, can be thermally excited out of their filled energy state
into an available empty energy state nearby, so only about 1% of all electrons are available
to transport quantities such as electric current or heat energy.

The shape of the Fermi surface is very important in understanding transport properties
of electrons in metals and it is often useful to visualise it in the reduced zone scheme. For
a two-dimensional crystal with a monatomic basis of divalent metal atoms kF = 2

√
π
a > π

a
and the Fermi surface extends into the second, the third and even the fourth Brillouin
zone.
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In the above picture the Fermi sphere is broken up into pieces lying in different Bril-
louin zones which are then moved around by reciprocal lattice vector translation to re-
assemble the pieces into a single shape in each zone. The four pieces in the second zone
are labelled a, b, c and d and the eight pieces in the third zone are labeled 1, . . . , 8. In the
reduced zone scheme there is a ‘hole’ of empty states in the middle of the second Brillouin
zone states and a star-shaped region of filled states in the third zone. The pictures are
drawn assuming that the Fermi surface is a perfect circle, which is a consequence of using
the free particle relation between energy and momentum (55). When the periodic poten-
tial energy is taken into account band gaps open up but the general shape doesn’t change
much except that the sharp edges in these pictures are replaced by more rounded edges.

The shape of the Fermi surface can be explored experimentally using magnetic fields.
An electron moving in a magnetic field experiences the Lorentz force F = −e(v × B) so
F.v = 0 and the electron’s energy does not change, it moves on a surface of constant
energy in momentum space. In particular electrons can move around on the Fermi surface,
but cannot leave it.

For a given dispersion relation E(k) (not necessarily quadratic) the group velocity of
the particles, vg, has components

vig =
1

h̄

∂E

∂ki
so vg =

1

h̄
∇kE(k),

where ∇k denotes the gradient operator in k-space. The Lorentz force is then

F = ṗ = h̄k̇ = −ev ×B = − e

h̄
∇kE(k)×B,

so the force is in a direction perpendicular to both B and ∇kE(k) in k-space. Now the
gradient operator acting on E(k) returns a vector ∇kE(k) that is normal to surfaces of
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constant energy. This direction is indicated by the red arrow in the figures below — it
points in opposite directions for electrons in a Brillouin zone with a hole in the middle
compared to Brillouin zones with a solid island in the middle. This means that, when
a magnetic filed is applied in the z-direction, electrons circulate around the holes in a
clockwise direction (left-hand figure below, blue arrow) while they circulate around islands
in an anti-clockwise (right-hand figure below, blue arrow).
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A curious effect here is that, when there is a hole in the middle of the Brillouin zone, the
group velocity is in the opposite direction to the wave-vector k and hence is in the opposite
direction to the momentum p = h̄k: with p = mvg the electrons behave as though they
have a negative mass! Newton’s 2nd law can be written as

v̇g = − e

m
(E+ vg ×B)

with − e
m = e

|m| > 0 (remember e > 0 and the charge on the electron is −e). The forces

on an electron with charge −e < 0 and mass m < 0 are indistinguishable from those on
a particle with positive charge e > 0 and mass m > 0 and the latter picture is a very
useful one. Such a particle is called a ‘hole’ and, when an electric field is applied to drive a
current to the right the current can be viewed as being carried by positively charged holes
moving to the right, rather than negatively electrons moving to the left. In one dimension
the situation looks like the picture below, as the electrons hop one space to the left the
hole (open circle) hops to the right. In two dimensions the ‘hole’ in the Brillouin zone on
the left in the figure above moves to the right as all the electrons move to the left.

In direct space we get the bottom left hand picture below: the two possibilities, a hole or
an island in the Brillouin zone, contribute different signs for the Hall co-efficients.
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The overall sign of the Hall co-efficient depends on how many electrons lie on the part of
the Fermi surface in the second Brillouin zone and how many lie on the part of the Fermi
surface in the third zone, the proportions are the same as just measuring the lengths of the
boundaries in each case. Magnesium actually has a negative Hall co-efficient, indicating
that electrons win over holes, but aluminium (valence 3), has a positive Hall co-efficient,
indicating that there are more electrons orbiting around a hole in the Fermi surface of
aluminium than around an island. This explains the mystery of the positive Hall co-
efficients described on page 1.

Calculation of energy bands — tight binding method

So far we have discovered and analysed the band structure of mobile electrons in
metals by considering perturbations of free electrons. We started with free electrons and
then modelled the effects of the crystal lattice by introducing a small periodic potential
U(r). We can gain further insights by going to the opposite extreme and starting with
the electrons tightly bound in N neutral atoms in free space and then trying to account
for perturbations on this model when these atoms are brought into close proximity to
each other in a crystal. Suppose the electrons in the outer shell of the free atom are in
an s-wave orbital with wave-function φ(r) and an energy Es which is non- degenerate.
Then this orbital is N -fold degenerate in a system of N atoms, because there are N such
orbitals each of which has the same energy. When a perturbation is switched on energy
states generally tend to have their degeneracy lifted and they split into a family of N very
close energy levels. Suppose we perturb the energy levels of the free atoms by bringing
the atoms so close together that the electrons in one atom start to feel forces due to the
electrons in ins neighbour — they energy levels are split as shown in the diagram below,

∆ Es <=>

s

(increasing
to left)

10  m

E

10   m
−10−9

E }

into an energy
E    broadens

band

separation
atomic

In N is very large, of the order of Avogadro’s number 1023 in crystals a few millimetres
across, then the split energy levels are so close they almost form a continuum, or a band,
with a thickness ∆E.

In the tight binding approximation we use the free neutral atom orbital wave-
functions for an electron at position r relative to the centre of the atom, φ(r), as a basis
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for wave-functions of the mobile electrons in the metal,

ψk(r) =
∑

j

ck,jφ(r− rj),

where the sum is over all the atoms in the crystal (we assume a monatomic basis), rj is
the position of atom j (lattice sites) and the ck,j are constants. While the ψ(r− rj) are
strongly localised around r = rj the electron wave-function, ψk(r), extends throughout
the whole crystal.

By Bloch’s theorem we have

ψk(r+ L) = eik.Lψk(r)

for any lattice vector L. This will be true if the ck,j are of the form ck,j =
1√
N e

ik.rj , since

then

ψk(r+ L) =
1√
N
∑

j

eik.rjφ(r+ L− rj)

=
1√
N
∑

j

eik.(rj+L)φ(r− rj) (by Bloch’s theorem)

= eik.Lψk(r).

The energy associated with this wave-function is,
with φj := φ(r− rj),

E(k) =< ψk| Ĥ |ψk >=
1

N
∑

j,j′

eik.(rj−rj′ ) < φj′ | Ĥ |φj >

=
∑

j

eik.(rj−r0)

∫
dV φ∗(r− rj)H(r)φ(r− r0), (58)

where the integral is over the whole crystal and< φj |Ĥ|φi >=
∫
dV φ∗(r−rj)H(r)φi(r−ri).

Assuming only nearest neighbour atoms have a non-zero overlap of their wave-functions
define

α := −
∫
dV φ∗(r− r0)H(r)φ(r− r0),

where α is positive since it is close to the energy of the orbital of an electron when the
atoms are free and the electron is bound to the atom, and

∫
dV φ∗(r− rj)H(r)φ(r− r0) := γ

if rj and r0 are nearest neighbours and all other overlaps are zero. With this approximation
the energy eigenvalues (58) are

E(k) = −α− γ
∑

j

eik.rj (59)
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where the sum is only over lattice sites that are nearest neighbours to a reference site at
r0, which can be taken to be the origin. For example in a simple cubic lattice each lattice
site has six nearest neighbours, at the origin these are

(±a, 0), (0,±a, 0) and (0, 0,±a)

and the energy (59) is

Ek = −α − 2γ
(
cos(kxa) + cos(kya) + cos(kza)

)
.

A contour plot of E(k) in the kx − ky plane, with kz = 0, is shown below and we see that

lines of equal energy are distorted from the free electron result, E(k) = h̄2

2m
(k2x + k2y), for

which they would be circles.

In three dimensions the perfect spheres of the free electron approximations are dis-
torted into curved cubical shapes. It was shown above that a spherical Fermi surface for a
monatomic basis of monovalent atoms does not extend as far as the edge of the first Bril-
louin zone, but when it is distorted by including interactions between electronic orbitals
in the tight binding approximation it can, as shown below
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Copper is a valence one metal with a face centred cubic lattice and the Fermi surface
looks like this, in relation to a Wigner-Seitz cell of the BCC reciprocal lattice,

7. Semi-conductors
Broadly speaking conductors are materials that conduct electricity (e.g. metals) while

insulators do not. More quantitatively conductors have small resistivities (large conduc-
tivities) at room temperature: for example silver has ρ = 1.59× 10−8 Ωm and copper has
ρ = 1.68 × 10−8 Ωm. At room temperature the main contributor to resistivity is scat-
tering of electrons off phonons and as the temperature decreases the number of phonons
decreases and the resistivity goes down like ρ ∝ T , but at very low temperatures electrons
will scatter off impurities in the metal and the resistivity tends to a constant value, ρ→ ρ0
as T → 0, since the impurity density is independent of T .
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Insulators typically have very high resistivities, ρ ≈ 1020 Ωm unless applied voltages
get large enough to cause electrical breakdown.

Semi-conductors are materials that have resistivities intermediate between metals and
insulators, with a wide range of values ρ = 10−3 ∼ 109 Ωm. Furthermore the resistivity
in these materials is very sensitive to temperature and impurity density, the resistivity
increases as the temperature goes down — the opposite behaviour to metals! Examples of
semi-conducting materials are silicon and germanium (both valence four elements).

The behaviour of these different types of materials can be understood in terms of their
Fermi surfaces and the size of their band gaps.

E(k)

k

E   (k) F

In a metal the Fermi surface is not near a band gap, there are empty states available
arbitrarily close to the Fermi surface, as shown above, and there is a large number of
states available with the same EF . Electrons with energy near EF can move easily when
an electric field is applied: indeed we would expect the resistivity to be zero at T = 0
were it not for the fact that all real metals inevitably have a certain amount of impurity
present, either foreign atoms or imperfect crystal structure, and these impede the electron’s
progress giving a finite resistivity ρ0, even at T = 0.

At finite temperature there is a strip of width kBT just above the Fermi surface
which electrons can scatter into by thermal excitations, leaving behind an empty state
just below the Fermi surface. Thus there is a strip with width of a few kBT at the Fermi
surface in which electrons can scatter off phonons and this scattering also contributes to
the resistivity. The width of the strip is ∝ T and hence the resistivity is ∝ T as mentioned
above.

98



E(k)

k

g B}E   >> k  T

In an insulator, shown above, the Fermi energy coincides with the top of an energy
band and the gap above, Eg, is much larger than the thermal energy kBT for any realistic
temperature (i.e. below the melting point). There are no nearby empty states available
for an electron to move into — the electrons cannot move and the resistivity is essentially
infinite. Neither can the electrons be thermally excited into the band above because
Eg >> kBT . At room temperature kBT ≈ 0.025 eV while typical band gaps in insulators
are a few eV .

E(k)

k

} gE  ~0.25 eV

Conduction
band

Valence band

In a semi-conductor the Fermi energy again coincides with the top of an energy band
but now the band gap, Eg, is only a few times the thermal energy kBT . At zero temperature
semi-conductors are insulators but at room temperature electrons can be thermally excited
into the band above EF and then there are nearby empty states available and they can
move under the influence of an external electric field and carry a current. The higher the
temperature the more nearby empty states there are and the lower the resistivity. The
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upper band is called the conduction band, because this is the energy band in which
electrons can carry current, while the lower band is called the valence band, because this
is the band that is exactly filled by virtue of the valence of the material.

When electrons in a semi-conductor are thermally excited into the conduction band
they leave behind empty states in the valence band which are called holes.

E(k)

k

Holes

Electrons

E

E c

v

A hole is the absence of an electron. If an electric field is applied to make the electrons
in the conduction band move to the left a rightward moving current is generated. When a
hole is present the same electric field makes the electron in the valence band which is just
to the right of the hole jump into the hole on its left, then the next electron to the right
does the same, and so on. The net effect is that the hole moves to the right, contribute to
a rightward current — the hole behaves for all practice purposes like a positively charged
particle.

Denoting the energy at the bottom of the conduction band by Ec and at the top of
the valence band by Ev, so the energy gap is Eg = Ec − Ev, we can Taylor expand E(k)
around Ec, assuming E(k) = E(−k), for small k

E(k) = Ec +
h̄2k2

2me
+ o(k4).

The parameter me appearing in the second term of the expansion behaves like a mass for
a free particle. In it is natural to define

me :=
2

h̄2
dE

d(k2)

∣∣∣∣
Ec
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as being the mass of the electrons in the conduction band, it is called the effective mass
of the electrons. This depends on the dispersion relation and is often very different to the
mass of an isolated free electron. In GaAs, for example, the effective massme = 0.066mfree

is a little less the 7% of the free electron mass.
Similarly if we Taylor expand around the top of the valence band

E(k) = Ev −
h̄2k2

2mh
+ o(k4),

where we have defined

mh := − 2

h̄2
dE

d(k2)

∣∣∣∣
Ev

.

mh behaves like an effective mass for holes. Holes and electrons can have different masses
in different materials, again in GaAs, for example, mh = 0.082mfree. Notice that the mass
of the charge carriers affects the Drude result for the conductivity (40), the contributions
of electrons and holes to the conductivity can be different even when their densities are
the same.

For small k the density of states for electrons has the free electron form (31), with the
substitution of the effective mass and ε→ E−Ec. We also define the density of states for
holes,

De(E) =
V

2π2

(2me)
3
2

h̄3
(E − Ec)

1
2

Dh(E) =
V

2π2

(2mh)
3
2

h̄3
(E − Ev)

1
2 .

Provided the number of electrons in the conduction band is not too large there will be
many more quantum states available at the bottom of the band than there are electrons
and we can evaluate the number of electrons in the conduction band with a given energy,
as a function of temperature, using Maxwell-Boltzmann statistics

fe =
1

exp
(
E−µ
kBT

)
+ 1

≈ e
− (E−µ)

kBT , E > Ec.

The electron concentration is then

ne =
Ne
V

=
1

V

∫ ∞

Ec

De(E)fe(E)dE =
1

2π2

(
2me

h̄2

) 3
2

e
µ

kBT

∫ ∞

Ec

√
E − Ec exp

(
− E

kBT

)
dE,

where Ne is the total number of electrons. The integral can be evaluated analytically,

∫ ∞

Ec

√
E −Ec exp

(
− E

kBT

)
dE = (kBT )

3
2 e

− Ec
kBT Γ

(3
2

)
= (kBT )

3
2 e

− Ec
kBT

(√π
2

)
,

and

ne = 2

(
mekBT

2πh̄2

) 3
2

exp

(
µ−Ec
kBT

)
.
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The thermal distribution of holes can be determined by recalling that fe is the prob-
ability of finding an electron with energy E when the temperature is T . For E < Ev
every state is either a hole or is filled with an electron so, if fh is the distribution of holes,
fe + fh = 1 with probability one. Hence

fh = 1− 1

exp
(
E−µ
kBT

)
+ 1

=
1

exp
(
µ−E
kBT

)
+ 1

≈ e
(E−µ)
kBT , E < Ev.

The hole concentration (conventionally denoted ph, to remind us that holes carry a positive
charge) is

ph =
Ne
V

=
1

V

∫ Ev

−∞
Dh(E)fh(E)dE =

1

2π2

(
2mh

h̄2

) 3
2

e
µ

kBT

∫ Ev

−∞

√
Ev − E exp

(
E

kBT

)
dE

= 2

(
mhkBT

2πh̄2

) 3
2

exp

(
Ev − µ

kBT

)
.

The chemical potential disappears from the product

neph = 4(memh)
3
2

(
kBT

2πh̄2

)3

exp

(−Eg
kBT

)
,

where Eg = Ec − Ev is the band gap. This is known as the law of mass action.25

In the semi-conductors described so far Ne = Np, because every electron gives rise to
a hole, so ne = pn and

ne = ph = 2(memh)
3
4

(
kBT

2πh̄2

) 3
2

exp

( −Eg
2kBT

)
. (60)

Both electrons and holes contribute to the conductivity and the Drude formula (40) gives

σ =
nee

2τe
me

+
phe

2τh
mh

(61)

(electrons and holes can have different scattering times τe 6= τh, just as they can have
different masses, because their dynamics can be different). The dominant temperature
dependence here is the exponential behaviour in (60) and, since Eg > 0 by definition,
this explains why the conductivity goes up as the temperature goes up — the higher the
temperature the more electrons are excited into the conduction band, increasing ne, and
at the same time more holes are created, increasing ph. The exponential dependence on

25 In analogy with chemical reactions where the same equation relates the density of two constituent parts of a

compound molecule which forms from its constituents with release of energy ∆E=Eg .
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the temperature also explains the conductivity is a very sensitive function of temperature
in a semi-conductor.

Semi-conductors with ne = ph are called intrinsic semi-conductors, but it is also
possible to arrange for materials with ne 6= ph by deliberately adding impurities, a proce-
dure called doping, resulting in doped semi-conductors. For example silicon (valence
IV) is a semi-conductor. If we replace a silicon atom in a crystal of silicon with an arsenic
atom then, since arsenic lies in the column just to the right of silicon in the periodic table
and hence has valence V, the arsenic atom has one more electron in its outermost orbital
than the silicon atom it replaced had and this electron becomes mobile in the crystal,
giving Ne = Np + 1 and contributing to the conductivity . The arsenic atom is called a
donor, because it donates an electron to become a mobile charge carrier.

Si Si Si Si

SiSi

Si Si Si

SiSiSiSi

Si

Si

As
+

−

If we replace a number of silicon atoms with arsenic atoms, but too many so that the
silicon crystal retains its integrity as a crystal, then more generally Ne > Np. By varying
the concentration of arsenic we can control the conductivity quite carefully.

Similarly we could replace some silicon atoms with boron atoms, which are in the
column immediately to the left of silicon in the periodic table and hence have valence III,
then the boron atoms have one electron less in their outer shell than silicon atoms. Mobile
electrons from silicon in the crystal then tend to get attracted to the boron and lose their
mobility, thus reducing Ne, so that Ne < Np, effectively increasing the number of holes.
The boron atoms are called attractors.

Si Si Si Si

SiSi

Si Si Si

SiSiSiSi

Si

Si

+
−B

Semi-conductors doped with donors are called n-type semi-conductors while those
doped with acceptors are called p-type.
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By growing crystals while controlling the amount of doping it is possible to man-
ufacture semi-conductors with a range of designed conductivities and this is key to the
semi-conductor industry.

7. Dielectrics and conductors

If a slab of insulating material is placed in an external electric field the electrons in
the outer shell of the atoms will be displaced relative to the positively charged atomic core
in the direction of the field, generating a small electric dipole moment p on each atom:
this called electronic polarisation. Furthermore, in an ionic crystal like NaCl for example,
the positive and negative ions in the crystal will be slightly displaced towards one another,
generating another dipole moment, called ionic polarisation. Some molecules, e.g. water,
H2O, have permanent electric dipole moments due to an asymmetric distribution of the
electronic density around the atomic cores, and these tend to line up parallel to any electric
field that the atom experiences, giving rise to dipolar polarisability. The net effect of any
or all of these three types of electric polarisability is that the material will develop an
electric polarisation with a dipole moment per unit volume P, simply referred to as the
polarisation. P tends to point in the same direction as the total electric field E inside the
material and this tends to reduce the total electric field in the crystal.26

26
E is a macroscopic average electric field. The microscopic electric field e is a combination of any externally applied

fields EApplied and any microscopic fields generated by the material in response to the applied field, eMicroscopic:

e=EApplied+eMicroscopic. For the latter the microscopic response field eMicroscopic will vary wildly from place to

place and from time to time, as the atoms and molecules in the crystal jiggle around due to their thermal motion (this is

obvious for ions, but even if the atoms are electrically neutral they may still have electric dipole moments). Taking the

average over a finite time period T , centered around a time t, and many primitive cells, with a total volume vx centered

on a point x, gives an average response field

EMedium(x,t)= 1
vxT

∫ t′=t+ T
2

t′=t−T
2

∫
vx

eMicroscopic(x
′,t′)d3x′dt′

is the average of the field generated by the medium’s response to EApplied. The average total field is then

E(x,t)=EApplied(x,t)+EMedium(x,t).

We need to take vx and T large enough that the fluctuations cancel out and EMedium does not depend on vx and T ,

but keep vx small enough that it is much less than either the volume of the crystal or the spatial variation of the applied

field and keep T much less then the frequency of the applied field.
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A slab of such polarisable material responds to an externally applied electric field as
though there were a positive surface density on side of the slab and a negative charge
density on the other, as shown above. Such a material is called a dielectric.

A dipole p in an electric field has potential energy

U = −p.E

so having p parallel to E is a minimum of the energy. Furthermore if E is not uniform the
potential energy has a gradient

∇iU = −
3∑

j=1

pi∇iEj

giving rise to a force

Fi = −∇iU =
3∑

j=1

pj∇iEj

which tends to pull the dipole towards regions of higher Ei, dipoles are attracted to regions
of stronger electric fields. That dielectrics are attracted to strong electrics fields is famously
demonstrated by rubbing a piece of plastic, such as a plastic comb, to generate some
electric charge on the plastic and then pieces of paper can be picked up by the electric field
generated by the charged plastic. The pieces of paper are electrically neutral but paper is
dielectric.

When an external electric field EApplied is applied the field inside the dielectric is
modified by the polarisation of the medium which is the response to EApplied. It is con-
venient to define the rather boringly named electric displacement vector, a better name is
the electric intensity,27

27 The electric charge inside any 2-dimensional surface S is
∫
S
D.dS, not ǫ0

∫
S
E.dS, hence electric intensity. As

shown in any textbook on electromagnetism, an important characteristic of D is that its normal component is continuous

across the interface between any two media — this is not true of E if there is a charge density on the interface between

the media. The tangential component of E is however continuous.
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D = ǫ0E+P (27)

(the issue of units is always moot in any discussion of electromagnetic properties in matter,
all formulae here are in SI units and a discussion of other (better) systems of units are
given in appendix B).

Inside a dielectric we now have a chicken and egg situation, the total field E depends
on the polarisation P but the amount of polarisation depends on the total field E. Some
assumption about the relation between E and P is needed to break this impasse. We can
work with D and E rather than P and E but this does not change the fact that we don’t
know what D is unless we know P as a function of E. To make progress we need another
assumption and in many practical situations it is sufficient to assume that P is linear in
E, this is an acceptable procedure provided E is not too strong.

Some materials can sustain a non-zero electric polarisation P even in the absence of
an external field, such materials are called pyroelectrics (lithium niobate, LiNbO3, is an
example of a pyroelectric crystal at room temperature). The name comes from the fact
that the permanent dipole moment of such crystals is not immediately obvious, as the
surface charges necessary to sustain P 6= 0 tend to get neutralised by charged particles
in the atmosphere, from cosmic rays, thunder storms, etc. But if the crystal is heated
slightly these foreign charged particles evaporate off the surface revealing the underlying
dipole moment — hence pyro, from the Greek word for heat. If they are heated up too
much though they can loose their polarisation and change from pyrolelectrics to ordinary
dielectrics at some temperature T0: this is an example of a phase change, similar in some
respects to what happens when water boils. If there is no latent heat associated with
this phase change then there can be large fluctuation in the polarisation near T0 and the
material is then called a ferroelectric, in analogy with ferromagnets described below (the
mineral perovskite that we encountered on page 11 is an example of a ferroelectrict).28

In a fluid or a gas it seems reasonable that P will be parallel to, and in the same
direction as, E but this is not necessarily true in a solid, such as a crystal. So for a fluid
we write

P = ǫ0χeE (28)

where χe is a positive constant known as the electric susceptibility of the medium (it is
a measure of how susceptible the medium is to being polarised when it is placed in an
external electric field). A medium whose polarisation vector satisfies (28) is called a linear

medium.29 For such a medium

D = ǫ0(1 + χe)E = ǫE

where
ǫ = ǫ0(1 + χe)

28 Although the applied field is zero this does not mean that E=0, rather E=EMedium. This is discussed in more

detail in Appendix C.
29 The polarisation P can depend on temperature and a better definition of the electric susceptibility is χe=

1
ǫ0

∂P

∂E |T ,

which works even for a non-linear medium, but (28) will be good enough for our purposes.
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is called the electric permittivity of the medium (in a vacuum χe = 0 so ǫ = ǫ0 is the same
as the electric permittivity of the vacuum).

In a solid P need not be exactly parallel to E and it is better to write in components

Pi = ǫ0

3∑

j=1

(χe)ijEj

where the electric susceptibility (χe)ij is a 3× 3 matrix. In fact (χe)ij is symmetric30 and
like any symmetric matrix can be diagonalised, its eigenvalues representing the three prin-
ciple directions of the electric susceptibility determined by the underlying crystal structure
(for any of the cubic crystals we expect the three principles directions to be equivalent and
(χe)ij = χeδij , crystals with cubic symmetry have no preferred direction and so cannot be
pyroelectrics). For most solid dielectrics the eigenvalues of χe are in the range31 10− 200,
for example the static susceptibility for NaCl is χe = 74.

In a metal electrons are free to move around inside the material and, as long as the
electric field is static and not too strong, they will always conspire to exactly cancel E
inside the material. For a perfect conductor χe → ∞, D = P 6= 0 and E = 0 inside
the material — a conducting material is a perfect dielectric. The electric field inside
a conducting medium vanishes even when a static external field is applied because the
free electrons in the material arrange themselves on the surface of the conductor so as to
generate a non-zero P which exactly cancels the electric field inside the conductor (this
will not be the case for fields that oscillate in time if the frequency is too high for the
electrons to respond quickly enough).

In an oscillating electric field the dielectric constant depends on the frequency and
a simplistic model of electronic polarisation that gives some insight as to where this fre-
quency comes from (at optical frequencies electronic polarsability gives by far the greatest
contribution to the dielectric constant). We view an electron in an atomic orbital as having
an energy h̄ω0 associated with a characteristic frequency ω0 and, if it is an excited orbital,
will decay with a life-time τ giving rise to damping. We can model the electron bound to
the atom as being like a damped harmonic oscillator. For simplicity consider a simple cubic
crystal with primitive cells aligned with the x, y and z-axes and an externally generated
plane electromagnetic wave passing through it in the x-direction, homogeneous in the y
and z-directions. Model an electron in an atom at lattice site sa, with s an integer, as a
damped harmonic oscillator with xs = sa+ δxs(t) and δxs(t) ≪ a (we assume that δxs(t),
the displacement from equilibrium, is much smaller than the size of the atom, otherwise
the atom will tear itself apart). In the absence of an electric field the equation of motion
for the δsx(t) is

meδẍs = −kδxs − γδẋs

30 Thermodynamically the free energy density, f=F/V where F is the Helmholtz free energy, depends on E and the

temperature. The polarisation per unit volume is Pi=− ∂f
∂Ei

∣∣
T
, so (χe)ij = − ∂f

∂Ei∂Ej

∣∣∣
T

is symmetric.

31 This is in SI units. In cgs units χcgs=
1
4πχSI .
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with damping factor γ > 0. Provided the damping is not too large there is an oscillatory
solution δxs(t) = Re(xs,0e

−iω̃t) with

−meω̃
2 = −k + iω̃γ ⇒ ω̃ =

√
4kme − γ2 − iγ

2me

where γ ≪ 2
√
kme and the sign is chosen so that ω0 = Re(ω̃) =

√
k
me

− γ2

4m2
e
≈
√

k
me

is

positive. We see that

δxs(t) = Re
(
xs,0e

−iω0− γ
2me

t
)
= xs,0e

− γ
2me

t cos(ω0t)

has amplitude xs,0e
− γt

2me , with xs,0 ≪ a, whose square decays with characteristic time-scale
τ = me

γ .
Now include the electric force due to an oscillating electric field in the x-direction

E(xs, t) = E0e
−i(ωt−kxs)x̂ with E0 a constant, which can be chosen to be real, and k = 2π

λ .
For optical frequencies the wavelength of the light is much greater than the size of the
atom or the lattice spacing λ≫ a and we can replace xs in the exponent with the average
position sa.32

The equation of motion for the displacement δxs(t) is now

meδẍs = −meω
2
0δxs − γδẋs − eE0e

−i(ωt−ksa).

There is an oscillating solution of the form xs(t) = δxs,0e
−iωt with amplitude given by

−meω
2δxs,0 = −meω

2
0δxs,0 + iωγδxx,0 − eE0e

iksa.

The amplitude δxs,0 is complex

δxs,0 =
e

me

E0e
iksa

{
(ω2 − ω2

0) +
(
γ
me

)
iω
} =

e

me

E0e
iksa

{
(ω2 − ω2

0) +
iω
τ

}

and the solution is

δxs(t) = δxs,0e
−iωt =

e

me

E0e
−i(ωt−ksa)

{
(ω2 − ω2

0) +
iω
τ

} .

In the presence of the electric field each atom develops a dipole moment

ps = −e(δxs) = − e2

me

E0e
−i(ωt−ksa)

{
(ω2 − ω2

0) +
iω
τ

}

and, if there are n atoms per unit volume, the electric susceptibility is

χe =
e2n

me

1{
(ω2

0 − ω2)− iω
τ

} =
e2n

me

(ω2
0 − ω2) + iω

τ{
(ω2 − ω2

0)
2 +

(
ω
τ

)2} ,

32 We also cannot let ω become larger than the inverse of the microscopic timescale T in footnote 28.
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it has become complex. Before going on the discuss what this means, first consider the
static case, ω = 0. Then

χe =
e2n

ǫ0meω2
0

⇒ ǫ = ǫ0 +
e2n

meω2
0

,

the contribution of the electronic polarisation to the electric permittivity depends on how
tightly the electrons are bound in the atoms. When ω0 is large the electrons are tightly
bound in the atoms, the atoms are quite rigid and the electronic polarisation susceptibility
is low.

For ω > 0 the real and imaginary parts of ǫ(ω) are plotted in the figure below for
τω ≫ 1 (long lived atomic excitations that are only weakly damped), with Re(χe) in red
and Im(χe) in blue.

As long as ω is not close to a resonance the real part of χe(ω) is related to the refractive
index of the medium, the speed of light in the medium is given by

v2 =
c2

1 +Re(χe)

where c = 1√
ǫ0µ0

is the speed of light in a vacuum, hence
√

1 +Re(χe) is the refractive

index. The refractive index, and hence the speed of light, depends on the frequency
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— which is why crystals can sometimes exhibit the colours of the rainbow. There is a
resonance at ω = ω0 where light is absorbed by the atom, its speed drops to a minimum
and the light finds it difficult to propagate through the crystal. The change in sign of
Re(χe) represents a phase change in the light as it passes through resonance. Im(χe) > 0
is an indication of the amount of absorption, near resonance the light loses energy as it
excites the atom.

The case ω0 = 0 is interesting, it corresponds to the electrons not being bound in
the atoms at all, they are free to roam around and this is an electrical conductor. For a
conductor

ǫ(ω) = ǫ0
(
1 + χe(ω)

)
= ǫ0 +

e2n

me

(
−τ2 + iτ

ω

1 + ω2τ2

)
.

There is a pole at ω = 0 with residue

lim
ω→0

(
ωχe(ω)

)
=
ie2nτ

me

which is exactly the same form as the Drude conductivity in (40), if we interpret τ as a
collision time for ballistic electrons. In fact

σ(ω) = −iωχe(ω)

is the AC conductivity in general, the real part is the dissipative Ohmic conductivity,
the imaginary part is called the refractive conductivity, because the real part of χe(ω) is
responsible for refraction of light.
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8. Magnetism and superconductors
Magnetism is a fascinating and very subtle phenomenon in condensed matter. It

is fundamentally a quantum mechanical phenomenon which arises from a net magnetic
dipole moment due to the electrons in the material, associated with both orbital angular
momentum and intrinsic spin. If these magnetic dipole moments can be persuaded to
line up then it is possible to generate a macroscopic dipole moment per unit volume, or
magnetisation, M.

According to classical physics this cannot happen. Maxwell-Boltzmann statistics says
that the probability of a system at temperature T being in a state with energy E is
proportional to e−E/kBT . An electron with charge −e moving with velocity v in an electric
field E and magnetic field B experiences the Lorentz force

F = −e(E+ v ×B).

The rate at which it’s energy changes is

v.F = −ev.E

which is independent of B. Classically magnetic fields do no work and so cannot affect the
energy of a particle and cannot affect the thermodynamic state of a system of particles.
There is no energetically favourable reason for a magnetisation to develop when a magnetic
field is switched on if there was no magnetisation to start with. Nevertheless it is an
experimental observation that this often does happen. The explanation requires quantum
mechanics.

There are three categories of magnetic materials:

1. Ferromagnets

Perhaps the most familiar aspect of magnetism is a bar magnet, such as a compass needle.
These are made of materials that can sustain a permanent macroscopic magnetic moment,
or magnetisation M, due to a fixed alignment of the microscopic magnetic dipole moments
of the electrons in the material even in the absence of any externally applied magnetic
field. Such materials are called ferromagnets, examples are iron, cobalt and nickel.
When ferromagnetic materials are heated up the electron magnetic moments become mis-
aligned and the field disappears at a specific temperature, called the Curie temperature,
e.g. TCurie = 1043◦K for iron.

2. Paramagnets and diamagnets

Even materials that do not have any permanent magnetisation can generate one in the
presence of an applied field, due to the microscopic magnetic moments associated with
electron motion and intrinsic spin responding to the external field. The magnetisation M
is defined as the magnetic moment per unit volume generated in the material. If applying
an external magnetic field results in a magnetisationM in the same direction as the applied
field the material is called a paramagnet, if it is opposite to the applied field the material
is called a diamagnet. In a paramagnet the magnetic field in the bulk of the material is
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larger than the applied field while in a diamagnet it is smaller. Paramagnetic materials
tend to be attracted to regions of high magnetic intensity while diamagnetic materials are
repelled, though for most materials the effects are much smaller than for the electrical
effects in dielectrics.

A classical picture of a paramagnetic is shown below, if we think of the magnetic
dipoles as arising from current loops. Note that dipole field intensity BDipole inside the
loop is in the opposite direction to the field outside it, in contrast to the picture of a
dielectric above in which the interior and exterior dipole fields EDipole are in the same
direction. This is the reason for the sign differences in the magnetic constituent relations
below compared to the electric constituent relations above.

I

Applied

= +Total Applied Dipole

Dipole

B

B

B BB

M

m

DipoleB

DipoleB

Aluminium is paramagnetic as are many salts made with transition metals (but not
NaCl, which is diamagnetic). Bismuth is one of the most diamagnetic materials at room
temeperature. In the extreme case, when the generated magnetisation completely cancels
the applied field, so that B = 0 in the bulk of the material, any applied magnetic intensity
is completely expelled from the bulk of the material, we have perfect diamagnetism. This
called theMeissner effect and when this happens such materials also display zero resistance
and are called superconductors.

Classically electric currents generate magnetic fields and Ampère’s law (in a static
situation one of Maxwell’s equations) gives

∇×B = µ0j (29)

where µ0 is the magnetic permeability of the vacuum. Inside a material the electrons
conspire to modify the magnetic permeability and we write33

∇×B = µj

where µ is the magnetic permeability of the material.

33 Again B here is the smoothed average of the total
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What is happening here is that individual electron’s magnetic dipole moments tend to
line up with the magnetic intensity B and B can also affect the electron’s orbital motion
which in turn generates a magnetic dipole moment inside the material. The resulting
dipole moment per unit volume M is called the magnetisation of the material. This then
modifies B and, just as for electric fields in a dielectric,

B = BApplied +BMedium,

where BApplied is the applied magnetic intensity and BMedium is the field produced by the
medium (again BMedium is a smooth average of the rapidly fluctuating microscopic field,
see footnote 29). As for dielectrics it is convenient to define the total magnetic field 34

H =
1

µ0
B−M. (30)

We have the same chicken and egg situation as for electric polarisation: the magneti-
sation M is the response of the medium to the total field B, but the total field depends on
both any externally applied field and on M itself. We need an extra assumption to break
this circle and it is often reasonable to assume that M is proportional to the magnetic
field,

M = χmH (31)

where χm called the magnetic susceptibility of the medium — it is a dimensionless number
and is a measure of how susceptible the medium is to being polarised by a magnetic
intensity. With this assumption we can eliminate M in favour of χm and write

B = µ0(1 + χm)H := µH, (32)

where µ = µ0(1 + χm) is the magnetic susceptibility of the medium.
Paramagnetic materials have χm > 0 and diamagnetic materials have −1 ≤ χm < 0.

For a given H paramagnetic materials have a larger value of B than in a vacuum while
diamagnetic materials have a smaller value of B. For χm → −1 we have a perfect dia-
magnet in which B = 0 for any H.32 We can now avoid all mention of magnetisation and
write Ampère’s Law as

∇×B = µj ⇒ ∇×H = j

34 The total magnetic flux Φ through any 2-dimensional surface S is Φ=
∫
S
B.dS, not 1

µ0

∫
S
H.dS, hence magnetic

intensity. An important characteristic of H is that its tangential component is continuous across the interface between

any two media — this is not true of B if there is a current density on the interface between the media. The normal

component of B is however continuous. Thus the electric intensity D and the magnetic intensity B both have continuous

normal components to any interface while the electric field E and the magnetic field H both have continuous tangential

components.
32 Perfect diamagnetism is associated with zero electrical resistance and this is a superconductor. This requires low

temperatures and there is a maximum value of H above which perfect diamagnatism is destroyed. Some textbooks define

M=χm
µ0

B, which would be more in line with the electric definition (28), and would give B=
µ0

(1−χm)
H, but in most

substances |χm|<<1 so there is no practical difference between this and (32) (superconductors are an exception, perfect

diamagnetism would be χm→−∞ with this convention). Thermodynamically χM (T ) can depend on temperature and

a better definition is χm= ∂M

∂H |
T
, which is also good even for a non-linear medium, but we do not require that level of

sophistication here.
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where
µ > µ0 for paramagnetic materials,

µ < µ0 for diamagnetic materials,

µ = 0 for a superconductor.

1. Insulators

In an insulating material electrons are bound to atoms and the magnetic properties of
the material relate to the spin and orbital characteristics of the electrons in the outermost
shell of the atoms or ions in the material.
• Langevin diamagnetism

If the outer electron shell is filled (e.g. noble gases Ne, Ar, Xe) then the orbital
angular momentum L and the total electron spin S are zero (all electron spins are paired,
up with down, and cancel), hence the total electron angular momentum h̄J = h̄L+h̄S = 0.
Applying a magnetic intensity will then force the electrons to circulate with the cyclotron
frequency

ωB =
eB

2me
.

If there are Z electrons in the outer shell this will generate a circular current

I = (−Ze)ωB
2π

= −
(
Ze2

4πme

)
B.

A current circulating around a loop of area A generates a magnetic dipole moment

m = IA.

Taking A = πr2e , where re is the radius of the outer electronic shell is too naive, but we
can replace r2e with the quantum mechanical expectation value < x2 > + < y2 > of the
electron’s position in the orbital plane perpendicular to B. Since

< r2 >=< x2 > + < y2 > + < z2 >

we can set

< x2 > + < y2 >=
2

3
< r2 >,

where < r2 > is the quantum mechanical expectation value of the square of the electron’s
distance from the central atomic nucleus, from which

m = −Ze2

6me
< r2 > B.

Experimentally the molar susceptibility, the magnetic susceptibility of one mole of material,
is often quoted. A mole contains Avogadros number NA = 6 × 1023 of atoms so the
magnetisation of one mole, MM , is

MM = NAm = −Ze
2NA

6me
< r2 > B
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and, assuming |χm| ≪ 1, (32) then gives the molar magnetic susceptibility

χM = −µ0e
2NA

6me
Z < r2 > (33)

which is is negative, the material is expected to be diamagnetic. This is known as Langevin
diamagnetism.

For most atoms or ions < r2 > is approximately the Bohr radius r0 = h̄2

me2
= 5.3 ×

10−11m. For example solid argon, with Z = 18, crystalises at 84◦K and equation (33),
with < r2 >= r20, gives

33

χM = −1.8× 10−10m3/mol.

The experimental value is about 30% larger than this at

χExp = −2.4× 10−10m3/mol.

These numbers are very small but they depend on the choice of units for the volume.
M in (33) is the magnetisation per unit volume and χm is the magnetic susceptibility
per unit volume (sometimes called the volume susceptibility) which, despite its name, is
dimensionless,34

χm = −µ0e
2n

6me
Z < r2 >, (34)

where n is the number of atoms per unit volume. Being dimensionless it gives a better idea
of the magnitude of the susceptibility. Argon crystallises into a FCC lattice with lattice
spacing a = 5.25Å so

n = 4×
(

1

5.25× 10−10

)2

(there are 4 lattice points in each conventional call of a FCC lattice) and equation (34)
gives

χm = −8.2× 10−6,

diamagnetism is generally a very small effect with χm ∼ 10−5 (with the exception of
superconductors).

• J 6= 0, Curie’s law

If the total angular momentum of the outermost electrons h̄J 6= 0 then a different
effect comes into play and susceptibilities tend to be positive (paramagnetism) and larger.
The total orbital angular momentum of the outer electrons h̄L generates a magnetic dipole
moment

mL = −γh̄L = −µBL
33 This is in SI units, in cgs units χM is measured in cm3/mol and χM,cgs=
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4π χM,SI .
34 This is easily seen by writing χm=− 4πǫ0µ0

6me

(
e2

4πǫ0r

)
Znr<r2>=− 2Z

3

(
1

mec2

)(
e2

4πǫ0r

)
nr<r2>: mec

2 and

e2

4πǫ0r are both energies and nr<r2> is dimensionless.
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where γ = e2

2m
is called the gyromagnetic ratio and µB = eh̄

2me
is the Bohr magneton. 35

The total spin S of the outer electrons generates a magnetic dipole moment

mS = −2h̄S = −2µBS,

the intrinsic gyromagnetic ratio of an electron is 2 — a fact whose explanation lies in the
relativistic theory of the electron that we do not have time to go into here. The total
magnetic moment of the outer electrons is the sum of these

m = mL +mS = −µB(L+ 2S).

In the presence of an external field B there is a torque on a magnetic dipole it wants to
minimise the classical potential energy

U = −m.B (35)

by changing the direction ofm so that it lines up with the field. But quantum mechanically
m is related to angular momentum and conservation of angular momentum does not allow
the direction ofm to change arbitrarily. Instead, if the magnetic intensity is not too strong,
the dipoles precesses around the direction of the angular momentum

J = L+ S

and we should calculate the time averaged value of m by projecting it onto the direction
of J. Of course quantum mechanically J does not have a specific direction, we cannot
simultaneously specify Jx, Jy and Jz because they do not commute as quantum mechanical
operators. But the application of an external magnetic intensity explicitly breaks rotational
symmetry and specifies a particular direction, which we shall choose to be the z-direction,

B = Bẑ.

The average value of the magnetisation in the J-direction is

<m >J= −µB
(L+ 2S).J

J

and quantum mechanically the energy of the dipole m in the field B is

U = − <m >J

B.J

J
= µB

{
(L+ 2S).J

}
Jz

J2
B.

The net effect is to give the atom or ion a magnetic dipole moment

m = −µB
{
(L+ 2S).J

}
Jz

J2

35
µB=9.24×10−24 m2Coulomb−2=9.24×10−24Joules/Tesla.
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which should be evaluated quantum mechanically. Since

J2 = (L+ S).(L+ S) = L2 + S2 + 2L.S

⇒ L.S =
1

2
(J2 − L2 − S2)

and
(L+ 2S).J = (L+ 2S).(L+ S) = L2 + 2S2 + 3L.S,

where J2 = J(J + 1), L2 = L(L+ 1) and S2 = S(S + 1), we have

m = −gµBJz

with

g =
3J(J + 1)− L(L+ 1) + S(S + 1)

2J(J + 1)
(36)

and Jz is quantised with 2J+1 values, Jz = −J,−J+1, . . . , J−1, J . g is called the Landé
g-factor, it reduces to 1 when S = 0 and J = L and to 2 when L = 0 and J = S.

In summary the allowed energies of the atom or ion in a magnetic intensity are

UJz = gµBJzB.

At finite temperature the lower energy levels will be more populated than the higher energy
according to the Boltzmann factors e−UJz/kBT and, if n is the number of atoms or ions per
unit volume, the magnetisation per unit volume will be given by

M = gµBn

∑J
Jz=−J Jze

−UJ

∑Jz
J=−Jz e

−UJ

B.

This can be evaluated by noting that the free energy per atom F can be obtained from36

e−F/kBT =

J∑

Jz=−J
e−UJ =

J∑

Jz=−J
e−gµBJzB =

sinh
(

(J+1)gµBB
2kBT

)

sinh
(
gµBB
2kBT

)

and

M = −n∂F
∂B

= ngµBJBJ

(
gµBJB

kBT

)
(37)

36 We use (1− xn+1) = (1− x)(1 + x+ · · ·xn) so

J∑

n=−J
e−nx = eJx

2J∑

n=0

e−nx = eJx
(1− e−(2J+1)x)

(1− e−x)
=
e(J+

1
2 )x − e−(J+ 1

2 )x

e
x
2 − e−

x
2

=
sinh

(
(J + 1

2 )x
)

sinh
(
x
2

) .
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where

BJ(x) =

(
J + 1

2

J

)
coth

((
J + 1

2

)
x

J

)
− 1

2J
coth

( x
2J

)
(38)

is known as the Brillouin function,37 with x = gµBJB
kBT

.
At very low temperatures coth(x) → 1 as T → 0 and, again assuming that χm ≪ 1,

M −→ µ0ngµBJ,

each atom or ion is aligned and the magnetisation is saturated at its maximum value. At
normal temperatures it is more common to have kBT ≫ gµJB in which case

cothx =
1

x
+
x

3
+O(x3)

and

BJ(x) ≈
J + 1

3J

and (37), again with |χm| ≪ 1, leads to Curie’s law,

χm = µ0n
(gµB)

2

3

J(J + 1)

kBT
:=

µ0np
2µ2
B

3kBT
, (39)

where p = g
√
J(J + 1). The paramagnetic susceptibility decreases like ∼ 1/T as the

temperature is increased. In insulators paramagnetic susceptibilities at room temperature
are typically of order 10−2 ∼ 10−3, two or three orders of magnitude greater that typical
diamagnetic susceptibilities. If paramagnetism is present it will dominate, insulating ma-
terials generally only exhibit diamagnetism when any paramagnetic effects are completely
absent.

p can be calculated from (36) and gives reasonable agreement with experimental mea-
surements for rare earth ions. For triply ionised Cerium, Ce3+, for example, there is one
electron in the outer shell with S = 1/2, L = 3 and J = 5/2 (4f2 in atomic spectroscopy
notation) so (36) predicts p = 2.54 to be compared to the experimental value of 2.4.

The calculation here has assumed that the outer electrons of the atom or ion are in
the same configuration in a crystal as they are in the free atom or ion, but this is not
always the case. Sometimes the crystal environment can affect the orbital motion of the
electrons and change p. This tends to happen with transition metal ions and is called
quenching, because the orbital angular momentum is reduced below that of the free atom
or ion. Doubly ionised copper, for example, has outer electrons that would be expected to
have L = 2 for a free ion but behave as though L = 0 in crystals, which changes the value
of p (Cu++ has lost it’s outer electrons and is not a metal, it is a common ion in salts that
are insulators, such as copper sulphate and copper chloride).

37 This is a standard notation, but unfortunately B now appears in these formulae representing four different things!

Brillouin in the Brillouin function BJ , Bohr in the Bohr magneton µB , Boltzmann in Boltzmann’s constant kB and of

course the magnetic intensity B itself.
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2. Metals
In a metal electrons are not bound to atoms and are free to roam around, like particles

in a gas fluid. Magnetism in metals is thus very different to magnetism in insulators.

• Pauli paramagnetism

In an external magnetic intensity free electron spins can be either parallel or anti-
parallel to the field. If we take B to be in the z-direction then parallel to the field (spin up,
Sz =

1
2 ) has lower energy than anti-parallel (spin down, Sz = −1

2 ) because of (35). Using
m = 2µBSz = ±µB for free electrons, the energies of spin up and spin down electrons in
the field B are

U± = ∓µBB.
A crucial aspect of the Fermi surface is that quantum states well below the Fermi energy
εF are occupied by electrons are therefore not available to other electrons, due to the Pauli
exclusion principle – they are essentially frozen out of the dynamics. At temperature T
electrons with energies in the range εE − kBT < ε < εF can be thermally excited to states
above εF and vacate a state with εF − kBT < ε < εF , making it available to any higher
energy electrons and that state can then affect the dynamics. Just as in the calculation
of heat capacities in metals that we did earlier only states with energies in the range
εE − kBT < ε < εF + kBT contribute to the magnetic properties of a metal because all
lower energy state are blocked by the exclusion principle and all higher energy states are
beyond the reach of thermal excitations.

If we denote the number density of spin up electrons by n+ and spin down electrons
by n−, so the total number density of electrons is n = n++n−, we can use (34) to evaluate
n± by modifying it to allow for the energy shift. The energy of an otherwise free electron
in the external field B is

ε± = ε∓ µBB =
h̄2k2

2m
∓ µBB,

so the lowest energies in each case (k = 0) are ∓µBB. For the number densities n± we
can use equation (34) modified to

n± =
1

2V

∫ ∞

∓µBB

fF (ε±)D(ε)dε

where

fF (ε±) =
1

e
ε±−µ

kBT + 1
.

The factor of 1/2 is because, in the absence of any magnetic intensity

n+ = n− =
1

2
n =

1

2V

∫ ∞

0

fF (ε)D(ε)dε.

Changing the integration variable ε→ ε± µBB

n± =
1

V

∫ ∞

0

fF (ε)D(ε± µBB)dε
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where

D±(ε) =
1

2
D(ε± µBB)

is the density of state for spin up/down electrons. As long as the magnetic intensity is not
too large and µBB ≪ εF we can Taylor expand

D±(ε) = D±(ε± µBB) =
1

2
D(ε)± 1

2
µBBD′(ε) + · · · .

The magnetisation per unit volume is

M = (n+ − n−)µB =
µ0µ

2
BB

V

∫ ∞

0

fF (ε)D′(ε)dε = −µ0µ
2
BB

V

∫ ∞

0

f ′
F (ε)D(ε)dε,

where we have integrated by parts in the last equation, withD(0) = 0 and used limε→∞ fF (ε) = 0.
From this we get the volume susceptibility

χm = −µ0µ
2
B

V

∫ ∞

0

f ′
F (ε)D(ε)dε.

At zero temperature fF (ε) is a step function,

fF (ε) =

{
1, ε < εF ;
0, ε > εF ,

and f ′
F (ε) = −δ(ε − εF ) is a Dirac δ-function, so, at temperatures, kBT ≪ εF , we can

approximate

χm =
µ0µ

2
B

V

∫ ∞

0

δ(ε− εF )D(ε)dε = D(εF )µ
2
B .

This is known as Pauli paramagnetism, the magnetic susceptibility is independent of tem-
perature (the approximation kBT ≪ εF is valid up to T ≈ 104◦K).

From (31) this can be re-written

χm =
3µ0

2

n

εF
µ2
B.

Comparing this this with Curie’s Law (39), with L = 0, J = S = 1/2 and p =
√
3, we

see that, apart from a numerical factor of 3/2, kBT in Curie’s Law is replaced with the
Fermi energy εF = kBTF in a metal. In an insulator the temperature affects the magnetic
susceptibility, in a metal it does not as long as the temperature does not approach the Fermi
energy. This is due to blocking of the filled low energy states by the Pauli exclusion principle
and results in much lower paramagnetic susceptibilities in metals than in insulators.38

38 Just as for specific heats in metals, the low value of the magnetic susceptibility in metals was a mystery until it

was realised that electrons obey Fermi-Dirac statistics and the exclusion principle.
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In our discussion so far we have ignored interactions, either electric or magnetic,
between electrons. When such interactions become important there are further interesting
magnetic phenomena.

3. Ferromagnets

We have been viewing electrons as little magnets with magnetic dipole moments.
Classically a line of such magnets free to pivot around fixed centres will line up, as in the
figure below, the net magnetisation will be zero.

But if the centres are not fixed the dipoles will be magnetically attracted to each
other. Quantum mechanically however there are stranger forces at work: the exclusion
principle again dictates that two electrons cannot occupy the same quantum state, so,
if their spins are parallel they cannot be at the same point in space while if their spins
are parallel they can, at least in principle though their Coulomb repulsion would mitigate
against this dynamically. In fact the exclusion principle can work in tandem with Coulomb
repulsion, the Coulomb energy is reduced if the electrons keep their distance and the
exclusion principle says they cannot be in the same place if their spins are parallel so if
their spins are parallel the exclusion principle can help keep them apart, thus reducing
their Coulomb energy and indeed this can happen. At low temperatures the exclusion
principle in conjunction with the Coulomb energy can ensure that the minimum energy
state is that the electrons keep their and their spins are aligned, parallel to each other, as
in the figure below.

When this happens the material develops a net magnetisation M without having to
apply an external field, so BApplied = 0. This is what happens in fridge magnet or a
compass needle, the magnetic field generated by a fridge magnet, and famously made
visible with iron filings sprinkled onto a piece of paper over the magnet. If the volume
of the magnet is V then the total magnetic dipole moment is MV and the magnetic field
outside the magnetic and a distance r well away from it, where µ = µ0, is a dipole field
with39

H(r) =
1

µ0
B(r) =

(
3(M.r)r

r5
− M

r3

)
V.

Inside the material a non-zero magnetisation when BApplied = 0 is only maintained as
long as the temperature is not too high. If the temperature increases the thermal energy

39 The Earth’s magnetic field is primarily a magnetic dipole but the Earth is not a ferromagnet. Instead the field is

generated by electrical currents due to convection in the molten iron and nickel of the Earth’s outer core.
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makes the dipoles jiggle around and the order can be destroyed. Typically this happens at
a temperature TC , the Curie temperature mentioned earlier. Above the Curie temperature
the medium has no net magnetisation in the absence of an external field, but can develop
one when a field is applied and it becomes a paramagnet. This can be understood from
equation (37) by treating the electrons as free, with L = 0, J = S = 1/2 and g = 2. Then
(37) gives40

M = nµB tanh

(
µBB

kBT

)
.

B here is the total magnetic intensity inside the material, which is non-zero in a ferromagnet
even when no external field is applied, a non-zero B is generated by M and, assuming that
B is proportional to M , B = λM , we get a relation between M and T ,

M = nµB tanh

(
µBλM

kBT

)
, (40)

which gives M(T ) implicitly in terms of T . When µBλM ≪ kBT we can approximate
tanhx ≈ x− 1

3
x3 + · · · and, at lowest order,

M ≈ µ2
BnλM

kBT
⇒ T ≈ µ2

Bnλ

kB
when µBλM ≪ kBT

and M vanishes at the Curie temperature

TC =
µ2
Bnλ

kB
.

We can deduce the functional form of M(T ) near TC by including the x3 term. For T
below TC , but close to it, let T = TC(1− t) with 0 ≤ t≪ 1. Then

µBλM

kBT
=

(
µBnλM

kBTC

)
(1− t) =

(
M

µBn

)
1

1− t
=

M

µBn
(1 + t+ · · ·)

and (40) gives

M = nµB

(
M

µBn
(1 + t)− 1

3

(
M

µBn

)3

(1 + 3t) +O(t3)

)

≈M

(
1 + t− 1

3

(
M

µBn

)2

(1 + 3t)

)

⇒ 0 ≈M

(
t− 1

3

(
M

µBn

)2

(1 + 3t)

)
.

40 From (38), with J=1/2 and using cosh(2x)=(cosh x)2+(sinhx)2 together with sinh(2x)=2 sinhx coshx, we

have B2=2 coth(2x)−coth x=
2 cosh(2x)
sinh(2x)

− cosh x
sinh x =

2(cosh x)2+2(sinh x)2

2 sinh x cosh x − cosh x
sinh x =tanh x.
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M vanishes when t = 0 so, when 1 ≫ t > 0, we can assume that M
µBn

is also small and we

can ignore the M2t term, giving

t ≈ 1

3

(
M

µBn

)2

and M ∝
√
t.

The function M(T ) defined implicitly in (40) does not have a simple analytic expres-
sion, but it can be plotted numerically and shown below is a plot of the magnetisation
of a ferromagnet as a function of temperature, with the

√
t behaviour near TC . Also

limx→∞ tanhx = 1, so M → µBn as T → 0.

nµ
B

T
C

Experimentally it is found that M ∝ tν with ν ≈ 0.33, rather than
√
t and this is

universal behaviour for all ferromagnets (in 3-dimensions, for 2-dimensional layers M ∝
t1/8). The reason for this discrepancy is that thermal fluctuations, which are usually very
small for macroscopic systems, become significant near TC and the local magnetisation
experiences large fluctuations — we need a more sophisticated theory, at least near TC . The
exponent ν, called a critical exponent, can be determined numerically within the framework
of the theory of critical phenomena and is quite well understood but the derivation is
beyond the scope of this exposition.

This change from the ferromagnetic state to the paramagnetic state as the temperature
is increased is an example of a phase transition, very similar in many of its details to what
happens when water boils. The Curie temperature in the ferromagnetic-paramagnetic
phase transition is very like the critical temperature at the critical point of water. When
water boils at atmospheric pressure at 100◦C the volume increase by a factor of 104 as
liquid water turns to water vapour, but as the pressure increases volume of the vapour
decreases while the liquid is incompressible, at the same time the the boiling point goes
up. At a pressure of 218 atmospheres the boiling point is 374◦c and the volume of the
vapour is identical to that of the liquid phase. At higher temperatures there is no real
distinction between liquid and vapour phase, we just have a very hot fluid. Water does not
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boil at temperatures above 374◦c at any pressure — this is called the critical temperature.
The magnetisation of a ferromagnet is like the difference in density between the liquid and
the gaseous phase of water and the Curie temperature for a ferromagnetic is analogous to
the critical temperature of water.

In contrast to ferromagnets in some materials the electron magnetic moments prefer
to line up at low temperatures as in the first figure in this section §8.3, with the dipoles in
a horizontal line as would be expected classically. While such materials do not exhibit any
permanent magnetisation they are nevertheless in a very ordered state at low temperatures
and are called anti-ferromagnets. Chromium and manganese oxide are examples of anti-
ferromagnetic materials.

4. Superconductors

For most conductors the conductivity increases as the temperature is decreased, be-
cause there are fewer phonons for the electrons to scatter off, but the conductivity remains
finite as T → 0 because there are always imperfections in the crystal structure, impurities
or atoms missing from some lattice sites. In principle in an absolutely pure, perfectly
ordered, crystal the conductivity would become infinite at zero temperature. But this is
not what a superconductor is. While superconductors do display zero resistivity at zero
temperature they also have the characteristic of expelling any magnetic intensity: the
defining features of a superconductor are zero resistivity and B = 0 inside the material.
From (30) this is equivalent to H = −M: it is not the magnetic field H that is expelled
from a superconductor it is the magnetic intensity B.

In a perfect conductor there is no scattering of electrons and an electric field will
accelerate electrons indefinitely, Newton’s 2nd law gives

me
dv

dt
= −eE

where v is the velocity of the electron. If all electrons have the same velocity and there
are n electrons per unit volume the current density is

j = −env

⇒ dj

dt
= −endv

dt
=
e2n

me
E.

(41)

where we assume that n is independent of time. For an AC current j = e−iωt j̃(ω), generated
by an oscillating electric field E = e−iωtẼ(ω),

j̃(ω) =
ie2n

meω
Ẽ(ω) = σ(ω)Ẽ(ω)

and we have a frequency dependent conductivity

σ(ω) =
ie2n

meω
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which is infinite at zero frequency, the assumption of no scattering has led to an infinite
conductivity.41

Taking the curl of (41) and using Faraday’ law of electromagnetic induction, that a
time varying magnetic intensity generates and electric field according to

∂B

∂t
= −∇× E,

we deduce that
∂

∂t

(
∇× j+

e2n

me
B

)
= 0,

hence ∇× j+ e2n
me

B is independent of time in a perfect conductor. In a superconductor we
postulate that

∇× j+
e2n

me
B = 0 (42)

and deduce that B = j = 0 inside the superconductor (a justification of the London
equation will be given below). To see this we use the two other Maxwell’s equations, when
E is independent of time,42

∇×B = µ0j, ∇.B = 0 ⇒ −∇2B = µ0(∇× j),

to give, with (42),

∇2B =
µ0e

2n

me
B. (43)

We can also take the curl of (42), and use current conservation ∇.j = 0 for a time inde-
pendent current, to arrive at

∇2j =
µ0e

2n

me
j. (44)

Equation (43) and (44) have exponentially growing and exponentially damped solutions.
The equation y′′(x) = λ2y(x) has solutions y ∝ e±λx. With λ and x positive, eλx grows
indefinitely with x while e−λx is exponentially damped and falls off rapidly as x increases.
Rejecting the exponentially growing solutions, this means that both B and j fall rapidly
to zero as we go inside a superconductor with characteristic length

λL =

√
me

µ0e2n
.

Thus B can only penetrate a distance λL into the superconductor and any current carried
by the superconductor is constrained to a thin layer of thickness λL at the surface. This

41 The conductivity is complex and the imaginary part is associated with optical absorption, rather than Ohmic

conductivity, but there is a relation between the real and imaginary parts dictated by complex analyticity, called

the Kramers-Kronig relation, which says that a pole in the imaginary part at ω=0 is related to infinite DC Ohmic

conductivity.
42 We use µ0 here because j is the näıve current, without yet taking into account the medium’s reaction.
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is a consequence of (42) which is called the London equation and λL is called the London

penetration depth. Typically λL is a few hundred Å, in lead for example λL = 3.4×10−8m.
A very successful microscopic mathematical model of superconductivity was con-

structed by Bardeen, Cooper and Schrieffer in 1957, called the BCS theory, which won
them the Nobel prize in 1972, but the full description of BCS theory is beyond the scope
of these notes. The basic idea is that the positive ion cores in a metal attract electrons and
sometimes the conditions are such that the electrons actually experience an overall attrac-
tion which can result in a bound state consisting of two electrons, called a Cooper pair.
The electrons like to pair up in an s-wave with spins in opposite directions (if the spins
are in the same direction the exclusion principle would make it harder for the electrons
to pair) so they form a bound state with electric charge −2e and spin zero, they form
charged bosons. At low temperatures all the Bosons fall into the same quantum state,
there is macroscopic quantum coherence and a Bose-Einstein condensate is formed which
is the superconducting state. The attraction between the electrons is very weak, they are
easily disrupted as the temperature is raised, the Cooper pairs evaporate and the super-
conductor reverts to being a normal metal, superconductivity requires low temperatures.
The Cooper pairs are also quite large, the wavefunction of the pair typically spreads over
ξ ∼ 103Å, covering a volume containing ∼ 109 ions and overlapping with ∼ 109 other pairs
(ξ is called the correlation length, it is a measure of the distance over which the electron’s
wave-functions are correlated). The reason for the superconductivity is that it costs an
energy ∆ to break up the pairs and there are no quantum states between the lowest en-
ergy state and the first excited state, as long as κBT ≪ ∆ there can be no interactions
and no dissipation, the resistivity is zero. ∆ is called an energy gap and typically ∆ is
of order 10−3 ∼ 10−4εF , about 10−3eV (10−22J) and the superconducting state requires
temperatures some three or four magnitudes less than the Fermi temperature, i.e.10◦K or
less.43 As always in a metal electrons deep below the Fermi surface are frozen out of the
dynamics by the exclusion principle, it is only a small fraction of electrons near the Fermi
surface that can form Cooper pairs.

Just as for ferromagnets there is critical temperature Tc above which superconductivity
is destroyed, though it is usually orders of magnitude below the Curie temperature for a
ferromagnetic.

Very strong magnetic fields also destroy superconductivity. If a metal that can super-
conduct at low temperatures is placed in an external magnetic field at room temperature
and the temperature is lowered until it becomes a superconductor the magnetic intensity
will be expelled from the bulk of the material only if the external field is not too large.
At any given temperature below Tc there is a critical magnetic field Hc(T ) that will de-
stroy the superconducting state and render the metal normal. Hc(Tc) = 0 at T = Tc and
increases as T decreases, tending to a finite value Hc(0) as T → 0. Typically Hc(0) is of
order of a Tesla, about 104 times the strength of the Earth’s magnetic field.

It takes some energy to expel the B-field from a superconductor as it is cooled, there is
latent heat associated with the phase transition between the normal and superconducting

43 An exception to this are the high-Tc superconductors discovered in 1986, which can superconduct above 77◦K,

the temperature at which nitrogen liquidises. These have a 2-dimensional layered structure and the Bosons are believed

to be spin 1. The microscopic theory of these superconductors is not yet fully understood.
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states of matter. Conversely if a conductor transitions from a superconducting state to
its normal state energy is released, a phenomenon known as quenching. For a strong
superconductor this can be quite dramatic. The Large Hadron Collider, the most powerful
particle accelerator in the world, at CERN in Geneva uses very strong superconducting
magnets to contain and focus the beams of protons circulating round it and it experienced
a quenching event in 2008, caused by a faulty electrical connection, which resulted in a
number of magnets having to be replaced.

The way in which the Meissner effect is implemented depends very much on whether
the London penetration depth λL is greater than or less than the coherence length ξ. If
ξ > λL the superconductor is called type-I and if ξ < λL it is called type-II. There is
energy associated with the interface between the normal and the superconducting phases
and this is positive when ξ > λL and negative when ξ < λL. Type-I superconductors
like to minimise the area between the two phases and type-II like to maximise it. In a
type-I superconductor B is just excluded discontinuously, at any T < Tc there is a finite
jump from B = 0 to B 6= 0 as H is increased from below Hc(T ) to above it. In a type-II
superconductor the transition is smoother and there is a lower critical field Hc1 below
there is no penetration of magnetic flux through the superconductor and an upper critical
field Hc2 above which the sample is a normal metal with no Cooper pairs. In between,
for Hc1 < H < Hc2 there is some penetration of B into the sample, but it is confined to
narrow tubes. The situation is illustrated in the figures below

H HH
c1 c2c

BB

Type−IIType−I
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Normal metal Type−I Type−II

Whether or not a superconductor is type-I or type-II is determined by the ratio of the
London penetration depth λL and the coherence length ξ.

Type-II superconductors are fascinating materials. In a type-II superconductor the
magnetic intensity threading through the superconductor is restricted to thin lines passing
through the material in the direction of H called magnetic vortices. These thin vortices are
non-superconducting, they are thin threads inside about the thickness of a Cooper pair ξ
inside of which the material is in the normal state. Remarkably the magnetic flux through
these vortices is quantised.

This is understood by the following argument. In quantum mechanics momentum,
and hence velocity, is an operator. For a particle with charge q and mass m moving in a
magnetic field with magnetic intensity B = ∇×A,

v =
1

m
(p− qA) =

1

m
(−ih̄∇− qA).

If
Ψ =

√
neiθ

is the multi-particle wave-function, normalised so that the number of particles per unit
volume n is

n = Ψ∗Ψ,

which we shall assume is uniform and independent of position, then the current density is

j = q(Ψ∗vΨ) =
nq

m
(h̄∇θ − qA).

This immediately gives the London equation (42)

∇× j = −nq
2

m
∇×A = −nq

2

m
B.
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Now consider a region of superconducting material with a hole in the middle, B = 0 in
the superconductor but can be non-zero in the hole. Integrating round a closed curve C
in the superconductor that surrounds the hole (see figure below) gives

∫

C

j.dl =
nq

m

∫

C

(h̄∇θ − qA).dl =
nqh̄

m
(θ2 − θ1)−

nq2

m

∫

S

(∇×A).dS = −nq
2

m

∫

S

B.dS,

where we have used Stokes’ theorem with S a surface stretched across the hole whose
boundary is C and θ1 and θ2 are the initial and final values of the phase θ as we integrate
around C. Now it is not necessarily the case that θ2 = θ1, but for single-valuedness of Ψ
it must be that they can only differ by 2π times an integer r,

θ1 − θ2 = 2πr.

We conclude that the total magnetic flux through the hole

Φ =

∫

S

B.dS =
2πh̄r

q
=
hr

q

is quantised in units of h
q
.

C

In a superconductor the current is carried by Cooper pairs consisting of pairs of
electrons and q = −2e, so we see that the vortices penetrating a type-II superconductor
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are quantised in units of

Φ0 =
h

2e
= 2.067833848 . . .× 10−15 Tesla m2.

This is a truly remarkable result, the flux quantisation is given purely in terms of the
fundamental constants h and e and is completely independent of the properties of the
material, it is the same for any superconductor!
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Appendix A: Sommerfeld expansion

When calculating the heat capacity of a metal as a function of temperature we ex-
panded in the small parameter kBT

εF
, this is called the Sommerfeld expansion. To see how

the Sommerfeld expansion works first start with N rather than U , (34),

N =

∫ ∞

0

fF (ε)D(ε)dε =
V

2π2

(
2m

h̄2

) 3
2
∫ ∞

0

ε
1
2 fF (ε)dε,

from (31). The most important region of the integral is around ε = µ, where the integrand
falls off steeply (see last figure), and we can focus on this region by integrating by parts:

N =
2

3

V

2π2

(
2m

h̄2

) 3
2 [
ε

3
2 fF (ε)

]∞
0

− 2

3

V

2π2

(
2m

h̄2

) 3
2
∫ ∞

0

ε
3
2
dfF (ε)

dε
dε.

The first term vanishes at both limits while, at least for T
TF

<< 1, the second is dominated

by the region around ε ≈ µ, where −dfF (ε)
dε is large. Write

−dfF (ε)
dε

= − d

dε

(
e(ε−µ)/kBT + 1

)−1
=

1

kBT

ex

(ex + 1)2
,

where x := ε−µ
kBT

. Now

N =
V

3π2

(
2m

h̄2

) 3
2
∫ ∞

0

ε
3
2

ex

(ex + 1)2
dε

kBT
=

V

3π2

(
2m

h̄2

) 3
2
∫ ∞

− µ
kBT

ε
3
2

ex

(ex + 1)2
dx,

where the integration variable has been changed from ε to x in the last expression. Now we
do two things: first observe that for x < − µ

kBT
, that is ε < 0, the integrand is exponentially

suppressed44 so we can extend the lower limit of integration down to −∞ and this has a
negligible effect on the integral; second we Taylor expand ε

3
2 about ε = µ,

ε
3
2 = µ

3
2 + (ε− µ)

d

dε
ε

3
2

∣∣∣∣
ε=µ

+
1

2
(ε− µ)2

d2

dε2
ε

3
2

∣∣∣∣
ε=µ

+ . . .

= µ
3
2 +

3

2
(ε− µ)µ

1
2 +

3

8
(ε− µ)2µ− 1

2 + . . . .

This allow us to re-write

N =
V

3π2

(
2m

h̄2

) 3
2
∫ ∞

−∞
ε

3
2

ex

(ex + 1)2
dx

=
V

3π2

(
2m

h̄2

) 3
2
∫ ∞

−∞

ex

(ex + 1)2

(
µ

3
2 +

3

2
kBTxµ

1
2 +

3

8
(kBTx)

2µ− 1
2 + . . .

)
dx,

44 Putting in some numbers, with µ≈εF , x < − µ
kBT ⇒ x < − εF

kBT ≈−100 and e−x is tiny.
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since ε− µ = kBTx.
Each individual integral over x on the right hand side can now be evaluated:

∫ ∞

−∞

ex

(ex + 1)2
dx =

∫ ∞

−∞
− d

dx

(
1

ex + 1

)
dx = −

[
1

(ex + 1)

]∞

−∞
= 1,

∫ ∞

−∞

xex

(ex + 1)2
dx =

∫ ∞

−∞

x

(ex + 1)(1 + e−x)
dx = 0,

∫ ∞

−∞

x2ex

(ex + 1)2
dx =

∫ ∞

−∞

x2

(ex + 1)(e−x + 1)
dx = 2

∫ ∞

0

x2

(ex + 1)(e−x + 1)
dx

= −2

∫ ∞

0

x2
d

dx

(
1

ex + 1

)
dx = 4

∫ ∞

0

x

ex + 1
dx =

π2

3
.

The second integral vanishes because the integrand is an odd function of x and the third
is left as an exercise.45 We now have

N =
V

3π2

(
2m

h̄2

) 3
2

µ
3
2 +

V

3π2

(
2m

h̄2

) 3
2 π2

8
(kBT )

2µ− 1
2 + . . . .

In terms of the Fermi energy (57) this is

N = N

(
µ

εF

) 3
2

+N
π2

8

(kBT )
2

ε
3
2

Fµ
1
2

+ . . .

⇒ 1 =

(
µ

εF

) 3
2

+
π2

8

(
kBT

εF

)2 (
εF
µ

) 1
2

+ . . . ,

where the dots indicate terms of order
(
kBT
εF

)4
and higher. This implies that µ

εF
=

1 + o
(
kBT
εF

)2
, so we can replace the

(
εF
µ

) 1
2

factor in the second term on the right hand

side above with unity, absorbing the difference into the dots, giving

µ

εF
=

[
1− π2

8

(
kBT

εF

)2
] 2

3

+ . . . = 1− 2

3

π2

8

(
kBT

εF

)2

+ . . . .

45 Hint: write 1
ex+1

= e−x

1+e−x =ex
∑

∞

n=0
(−1)ne−nx and use Gamma functions, Γ(n)=

∫
∞

0
x(n−1)e−xdx=(n−1)!.
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Appendix B: Electromagnetic units

The question of what system of units to use in describing the electric and magnetic
properties of matter is notoriously moot. SI units are not good for describing electric and
magnetic properties of materials, not only do they mess up some otherwise rather elegant
formulae with ugly things with horrible sounding names (like the electric permittivity of
the vacuum ǫ0 and the magnetic permeability of the vacuum µ0) but they also give E and
B different units.

In SI units ǫ0 and µ0 are the electric permittivity of the vacuum and the magnetic
permeability of the vacuum respectively, with the product ǫ0µ0 = 1

c2
with c = 2.99792458×

108m/s being the speed of light in a vacuum. Electric charge is measured in Coloumb (C),
with the magnitude of the electric charge e = 1.6 × 10−19C. B and E have different
dimensions!

Unfortunately SI units are nowadays the standard for pedagogical expositions so they
are used in the text. cgs units are better, at least they give E and B the same dimensions,
with ǫ0 replaced by 1

4π and µ0 replaced by 4π
c2 , but these still suffer from 4π’s all over the

place. The most elegant units are Lorentz-Heavyside units in which ǫ0 = 1 and µ0 = 1
c2

and E and B have the same dimensions. If I ruled the world all electromagnetic formulae
would be written in Lorentz-Heavyside units. Below the equations of electromagnetism
are exhibited in all three systems of units for comparison.
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SI units

Maxwell’s Equations:

∇×E+
∂B

∂t
= 0, ∇.B = 0

∇×H− ∂D

∂t
= j, ∇.D = ρ

Lorentz force law: Coulomb’s law:

F = q(E+ v ×B), F =
q1q2

4πǫ0r2
r̂

Constituent relations:

D = ǫ0E+P, H =
1

µ0
B−M

P = ǫ0χeE. M =
χm
µ0

H

ǫ = ǫ0(1 + χe), µ = µ0(1 + χm)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Only four dimensional quantities are need and in SI units these are metres (m) for length,
kilogrammes (kg) for mass, seconds (s) for time and Coulombs (C) for electric charge,
the magnitude of the charge on the electron being 1.60219 × 10−19C. The units of E
are kg m C−1 s−2 those of B are kg C−1 s−1 (also called a Tesla). The units of ǫ0 are
C2 s2 kg−1 m−3 and those of µ0 are kg m C−2,

ǫ0 =
107

4π

1

(2.997925× 108)2
C2s2kg−1m−3 = 8.854185× 10−12 C2s2kg−1m−3

µ0 = 4π × 10−7kgmC−2.
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cgs units

Maxwell’s Equations:

∇×E+
1

c

∂B

∂t
= 0, ∇.B = 0

∇×H− 1

c

∂D

∂t
=

4π

c
j, ∇.D = 4πρ

Lorentz force law: Coulomb’s law:

F = q


E+

v

c
×B


), F =

q1q2
r2

r̂

Constituent relations:

D = E+ 4πP, H = B− 4πM

P = χeE. M = χmH

ǫ = 1 + 4πχe, µ = 1 + 4πχm

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Units are centimetres (cm) for length, grammes (g) for mass, seconds (s) for time and
the electrostatic unit (esu) for electric charge, 1C = 2.997924580× 109Fr. An esu is also
known as a statcoulomb (statC) or also as a Franklin (Fr). E and B are both measured
in g cm esu−1 s−2 while ǫ and µ are dimensionless. By setting ǫ0 = 1 the esu is actually
redundant as it has dimensions of g1/2 cm3/2 s−1.
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Lorentz-Heavyside units

Maxwell’s Equations:

∇×E+
1

c

∂B

∂t
= 0, ∇.B = 0

∇×H− 1

c

∂D

∂t
=

1

c
j, ∇.D = ρ

Lorentz force law: Coulomb’s law:

F = q


E+

v

c
×B


), F =

q1q2
4πr2

r̂

Constituent relations:

D = E+P, H = B−M

P = χeE. M = χmH

ǫ = 1 + χe, µ = 1 + χm

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

We can use metres for length, kilogrammes for mass, and seconds for time. Again setting
ǫ0 = 1 means that charge has units of kg1/2m3/2 s−1. E and B are both measured in
kg1/2m−1/2 s−1. Alternatively we could use cm and g for length and mass.

Although not appropriate for condensed matter we note that Maxwell’s equations
are much tidier if we use units with c = 1 and measure lengths in light-seconds (ls),
1 ls = 2.997924580× 108 m. Lorentz-Heavyside units are also ideally suited to relativistic
physics and are usually the units of choice in that domain.
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Appendix B: Ferroelectrics and ferromagnets

A ferroelectric sustains a non-zero electric dipole moment even when there is no ex-
ternal electric field applied. To understand this consider a uniform slab of a ferroelectric
material, perpendicular to the x-direction and extending infinitely far in the transverse y
and z-directions, as shown below.

E0

−

−

−

−

−

− +

+

+

+

+

+

+−
−E  0

There is no external field here, E = E0 is generated purely by the medium itself, by
a permanent positive surface charge density σ0 on one side and a negative surface charge
density −σ0 on the other. A simple application of Gauss’ law tells us that the magnitude
of E0 is

E0 =
σ0
2ǫ0

.

It has the same magnitude inside the material as outside but it points in the opposite
direction inside. E0 is generated by a permanent intrinsic polarisation P = P0 inside the
slab, which is uniform for an infinite slab. Outside the slab P = 0 so

D = ǫ0E+P = −ǫ0E0 +P inside the slab

D = ǫ0E = ǫ0E0, outside the slab.

There are no free or external charges, so D is continuous across the surface, it is the same
both inside and outside the slab,

D = ǫ0E0 = −ǫ0E0 + P0 ⇒ P0 = 2ǫ0E0.

It is tempting to conclude that χe = 2, but this is misleading. Let us now apply a constant
external field in the x-direction, EApplied = EAppliedx̂, so that E = EApplied + EMedium.
EApplied will cause additional polarisation in the medium and tends to increase P . This
increase can be modelled by an increase in the surface charge density σ0 → σ = σ0 + δσ
giving an extra contribution δE = δσ

2ǫ0
to the total field exterior to the slab E(e). As long
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as EApplied is not too large we expect that δσ ∝ EApplied, so we can write δσ = 2λǫ0EA
with 0 < λ < 1 (λ < 1 because δσ cannot be responsible for all of EA, which is being
applied externally). This in turn will increase the polarisation inside the medium from
P0 = σ0 to

P = σ0 + δσ = P0 + 2ǫ0λEA = 2ǫ0(E0 + λEA).

The total electric field inside the slab is now

E = −E0 − δE +EA = −E0 + (1− λ)EA ⇒ EA =
E +E0

1− λ

hence

P (E) = 2ǫ0

(
E0 +

λ

1− λ
(E + E0)

)

=
2ǫ0E0

(1− λ)
+

2λǫ0
(1− λ)

E

= P (0) + ǫ0χeE

where

P (0) =
P0

1− λ
and χe =

2λ

1− λ
.

P (0) is defined to be the polarisation when the total field E = 0, it is not the same as
the intrinsic pyroelectric polarisation P0 which is defined to be the polarisation when the
applied field EA = 0.

A pyroelectric is described by a polarisation that is linear in the total field E but
with a non-zero constant term. A parallel discussion can be given for a ferromagnet, but
magnetic susceptibilities are so small that λ≪ 1 and M(0) is almost the same as M0.
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