EP402/MP464 - Solid State Physics

1st Assignment
Due in before 5pm on Friday 5th March 2021

1. Prove that the reciprocal lattice of a reciprocal lattice is the original lattice. In other words, if ($\mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{3}$) are the basis vectors for a Bravais lattice and $\left(\mathbf{b}_{1}, \mathbf{b}_{2}, \mathbf{b}_{3}\right)$ the corresponding basis for its recipocal lattice, then define vectors $\left(\mathbf{c}_{1}, \mathbf{c}_{2}, \mathbf{c}_{3}\right)$ as

$$
\begin{aligned}
\mathbf{c}_{1} & :=\frac{2 \pi}{V_{b}} \mathbf{b}_{2} \times \mathbf{b}_{3}, \\
\mathbf{c}_{2} & :=\frac{2 \pi}{V_{b}} \mathbf{b}_{3} \times \mathbf{b}_{1}, \\
\mathbf{c}_{3} & :=\frac{2 \pi}{V_{b}} \mathbf{b}_{1} \times \mathbf{b}_{2} .
\end{aligned}
$$

Show that $\mathbf{c}_{1}=\mathbf{a}_{1}, \mathbf{c}_{2}=\mathbf{a}_{2}$ and $\mathbf{c}_{3}=\mathbf{a}_{3}$.
Note: It is this property of the Bravais lattice that allows us to use the reciprocal lattice vectors obtained via x-ray crystallography to determine the actual Bravais lattice of the solid under examination.
2. A 2-dimensional hexagonal crystal (for example graphene) is defined by Bravais lattice basis vectors

$$
\mathbf{a}_{1}=a \hat{\mathbf{x}}, \quad \mathbf{a}_{2}=-\frac{a}{2} \hat{\mathbf{x}}+\frac{\sqrt{3} a}{2} \hat{\mathbf{y}} .
$$

(a) Find basis vectors \mathbf{b}_{1} and \mathbf{b}_{2} for the reciprocal lattice, and use these to draw the the reciprocal lattice. (To do this, let $\mathbf{a}_{3}=\hat{\mathbf{z}}$ be a "dummy" third Bravais lattice basis vector, and then use the usual formulae to get \mathbf{b}_{1} and \mathbf{b}_{2}.)
(b) On a separate diagram construct and draw the first and second Brillouin zones of this lattice.

