MP364 QUANTUM MECHANICS 2

Introduction
Quantum theory of angular momentum
Quantum theory of a particle in a central potential

- Hydrogen atom
- Three-dimensional isotropic harmonic oscillator (a model of atomic nucleus)

Non-relativistic quantum theory of electron spin
Addition of angular momenta
Stationary perturbation theory
(Time-dependent perturbation theory)
Systems of identical particles

REFERENCES

Claude Cohen-Tannoudji, Bernard Liu, and Franck Laloë Quantum Mechanics I and II
John Wiley \& Sons

Lecture Notes and Problem Sets - online access (no moodle!):
http://www.thphys.nuim.ie/Notes/MP364/MP364.html

REQUIREMENTS

The total mark of 100 points consists of:

Examination (constitutes 80% of the total mark):
duration: 120 minutes,
requirements: answer all questions in writing.
Maximum mark: 80 points.

Continuous Assessment (20\% of the total mark):
quizzes / homework assignments.
Maximum mark: 20 points.
NOTE THAT CONTINUOUS ASSESSMENT IS AN INTEGRAL PART OF YOUR TOTAL MARK AND IS NOT APPLIED TO STUDENTS' ADVANTAGE

Section 0: FORMALISM OF QUANTUM MECHANICS

(From Cohen-Tannoudji, Chapters II \& III)

Overview:

Postulates of quantum mechanics

- States of quantum mechanical systems
- Quantum operators and physical quantities
- Measurement postulates
- Time evolution of quantum systems

FIRST POSTULATE

At a fixed time t, the state of a physical system is defined by specifying a vector, or a ket, $|\psi(t)\rangle$ belonging to the state space \mathcal{H}.

The state space \mathcal{H} is a space of all possible states of a given physical system.

In quantum mechanics, this space is a Hilbert space.

What is a Hilbert space?

A complex vector space with

- an inner product,
- a norm and a metric induced by the inner product, and is also
- complete as a metric space.

A Hilbert space is a complex inner product vector space that is also normed space and complete metric space with norm and metric induced by the inner product.

1) A complex vector space is a set of elements, called vectors (or kets), with an operation of addition, which for each pair of vectors $|\psi\rangle$ and $|\phi\rangle$ specifies a vector $|\psi\rangle+|\phi\rangle$, and an operation of scalar multiplication, which for each vector $|\psi\rangle$ and a number $c \in \mathbb{C}$ specifies a vector $c|\psi\rangle$ such that
a) $|\psi\rangle+|\phi\rangle=|\phi\rangle+|\psi\rangle$
b) $|\psi\rangle+(|\phi\rangle+|\chi\rangle)=(|\psi\rangle+|\phi\rangle)+|\chi\rangle$
c) there is a unique zero vector s.t. $|\psi\rangle+0=|\psi\rangle$
d) $c(|\psi\rangle+|\phi\rangle)=c|\psi\rangle+c|\phi\rangle$
e) $(c+d)|\psi\rangle=c|\psi\rangle+d|\psi\rangle$
f) $c(d|\psi\rangle)=(c d)|\psi\rangle$
g) $1 .|\psi\rangle=|\psi\rangle$
h) $0 .|\psi\rangle=0$

We need a complex vector space to accommodate the principle of superposition and the related phenomena; recall for example an interference in the Young double slit experiment we have encountered in MP205 Vibrations \& Waves.

Example: A set of N -tuples of complex numbers.
Example: Let us first consider a two-dimensional Hilbert space, \mathcal{H}^{2}, like the one you encountered in MP363 Quantum Mechanics I when you studied a two level system of a particle with the spin $1 / 2$.

The space represents all the states of the system and they all have the form

$$
|\psi\rangle=c_{\uparrow}|\uparrow\rangle+c_{\downarrow}|\downarrow\rangle=\binom{c_{\uparrow}}{c_{\downarrow}}=c_{\uparrow}\binom{1}{0}+c_{\downarrow}\binom{0}{1}
$$

where c_{\uparrow} and c_{\downarrow} are complex numbers which we call probability amplitudes.

The probability amplitudes give us probabilities

$$
\begin{aligned}
& p_{\uparrow}=c_{\uparrow}^{*} c_{\uparrow}=\left|c_{\uparrow}\right|^{2} \\
& p_{\downarrow}=c_{\downarrow}^{*} c_{\downarrow}=\left|c_{\downarrow}\right|^{2}
\end{aligned}
$$

that when we measure the spin of the particle we get spin \uparrow or spin \downarrow respectively.

The kets $|\uparrow\rangle$ and $|\downarrow\rangle$ are eigenstates of the operator \hat{S}_{z} corresponding to the eigenvalues $+\hbar / 2$ and $-\hbar / 2$. They serve as basis vectors or basis states, that is, they play a role in the Hilbert space similar to the role of orthogonal unit vectors \vec{i}, \vec{j} and \vec{k} in a three dimensional Euclidean space.

We need the inner product to be able to talk about orthogonality.
2. A complex vector space with an inner product.

The inner product assigns a complex number to a pair of kets $|\psi\rangle,|\phi\rangle \in \mathcal{H}$:

$$
\langle\phi \mid \psi\rangle \in \mathbb{C}
$$

A bra $\langle\phi|$ is the adjoint of a ket $|\phi\rangle$; we construct it as follows:

$$
\begin{aligned}
\text { if } & |\phi\rangle=c_{1}\left|\phi_{1}\right\rangle+c_{2}\left|\phi_{2}\right\rangle, \\
\text { then } & \langle\phi|=c_{1}^{*}\left\langle\phi_{1}\right|+c_{2}^{*}\left\langle\phi_{2}\right|
\end{aligned}
$$

Properties:
complex conjugation $\quad\langle\phi \mid \psi\rangle=\langle\psi \mid \phi\rangle^{*}$
sesquilinearity $\left\langle a_{1} \phi_{1}+a_{2} \phi_{2} \mid \psi\right\rangle=a_{1}^{*}\left\langle\phi_{1} \mid \psi\right\rangle+a_{2}^{*}\left\langle\phi_{2} \mid \psi\right\rangle$
$\left\langle\phi \mid c_{1} \psi_{1}+c_{2} \psi_{2}\right\rangle=c_{1}\left\langle\phi \mid \psi_{1}\right\rangle+c_{2}\left\langle\phi \mid \psi_{2}\right\rangle$
positive-definiteness $\quad\langle\psi \mid \psi\rangle \geq 0$ where the equality holds iff $|\psi\rangle=0$
3. Normed vector space and metric vector space
(a) Norm induced by the inner product:

$$
\|\psi\|=\sqrt{\langle\psi \mid \psi\rangle} \quad \text { the norm of a state }|\psi\rangle
$$

If the norm is 1 , the state is said to be normalized.
If a given state $\left|\psi^{\prime}\right\rangle$ is not normalized, $\left\|\psi^{\prime}\right\| \neq 1$, then we have to normalize it, that is, to divide it by the norm. The normalized state is then

$$
|\psi\rangle=\frac{\left|\psi^{\prime}\right\rangle}{\sqrt{\left\langle\psi^{\prime} \mid \psi^{\prime}\right\rangle}}
$$

Two vectors $|\phi\rangle$ and $|\psi\rangle$ are said to be orthogonal if their inner product is zero.

A set of normalized and mutually orthogonal vectors is an orthonormal set.

Example: Basis vectors form an orthonormal set.

We call the vectors $\left\{\left|\phi_{1}\right\rangle,\left|\phi_{2}\right\rangle, \ldots\right\}$ a basis vectors or basis states, of \mathcal{H} iff

$$
\begin{aligned}
\operatorname{span}\left\{\left|\phi_{1}\right\rangle,\left|\phi_{2}\right\rangle, \ldots\right\} & =\mathcal{H} \\
\text { and }\left\langle\phi_{i} \mid \phi_{j}\right\rangle & =\delta_{i j}
\end{aligned}
$$

where $\delta_{i j}$ is the Kronecker delta-symbol:

$$
\begin{array}{lll}
\delta_{i j}=0 & \text { iff } & i \neq j \\
\delta_{i j}=1 & \text { iff } & i=j
\end{array}
$$

Example: A particle with spin 1/2:
Ket

$$
|\psi\rangle=c_{\uparrow}|\uparrow\rangle+c_{\downarrow}|\downarrow\rangle=\binom{c_{\uparrow}}{c_{\downarrow}}=c_{\uparrow}\binom{1}{0}+c_{\downarrow}\binom{0}{1}
$$

Bra: constructing the adjoint of $|\psi\rangle$

$$
\langle\psi|=c_{\uparrow}^{*}\langle\uparrow|+c_{\downarrow}^{*}\langle\downarrow|=\left(\begin{array}{ll}
c_{\uparrow}^{*} & c_{\downarrow}^{*}
\end{array}\right)=c_{\uparrow}^{*}\left(\begin{array}{ll}
1 & 0
\end{array}\right)+c_{\downarrow}^{*}\left(\begin{array}{ll}
0 & 1
\end{array}\right)
$$

Basis vectors: norm and orthogonality

$$
\begin{array}{ll}
\langle\uparrow \mid \uparrow\rangle=\left(\begin{array}{ll}
1 & 0
\end{array}\right)\binom{1}{0}=1 & \langle\uparrow \mid \downarrow\rangle=\left(\begin{array}{ll}
1 & 0
\end{array}\right)\binom{0}{1}=0 \\
\langle\downarrow \mid \uparrow\rangle=\left(\begin{array}{ll}
0 & 1
\end{array}\right)\binom{1}{0}=0 & \langle\downarrow \mid \downarrow\rangle=\left(\begin{array}{ll}
0 & 1
\end{array}\right)\binom{0}{1}=1
\end{array}
$$

Example: A particle with the spin $1 / 2:|\psi\rangle=c_{\uparrow}|\uparrow\rangle+c_{\downarrow}|\downarrow\rangle=\binom{c_{\uparrow}}{c_{\downarrow}}$
Norm

$$
\begin{aligned}
\|\psi\| & =\sqrt{\langle\psi \mid \psi\rangle} \\
\langle\psi \mid \psi\rangle & =\left(c_{\uparrow}^{*}\langle\uparrow|+c_{\downarrow}^{*}\langle\downarrow|\right)\left(c_{\uparrow}|\uparrow\rangle+c_{\downarrow}|\downarrow\rangle\right) \\
& =c_{\uparrow}^{*} c_{\uparrow}\langle\uparrow \mid \uparrow\rangle+c_{\uparrow}^{*} c_{\downarrow}\langle\uparrow \mid \downarrow\rangle+c_{\downarrow}^{*} c_{\uparrow}\langle\downarrow \mid \uparrow\rangle+c_{\downarrow}^{*} c_{\downarrow}\langle\downarrow \mid \downarrow\rangle \\
& =\left|c_{\uparrow}\right|^{2}+\left|c_{\downarrow}\right|^{2}=1 \\
\|\psi\| & =1
\end{aligned}
$$

In matrix representation

$$
\langle\psi \mid \psi\rangle=\left(\begin{array}{cc}
c_{\uparrow}^{*} & c_{\downarrow}^{*}
\end{array}\right)\binom{c_{\uparrow}}{c_{\downarrow}}=\left|c_{\uparrow}\right|^{2}+\left|c_{\downarrow}\right|^{2}=1
$$

Note that the normalization condition translates as $\left|c_{\uparrow}\right|^{2}+\left|c_{\downarrow}\right|^{2}=p_{\uparrow}+p_{\downarrow}=1$, that is, the probabilities of all mutually exclusive measurement results sum to unity.
(b) A metric is a map which assigns to each pair of vectors $|\psi\rangle,|\phi\rangle$ a scalar $\rho \geq 0$ s.t.

1. $\rho(|\psi\rangle,|\phi\rangle)=0$ iff $|\psi\rangle=|\phi\rangle$;
2. $\rho(|\psi\rangle,|\phi\rangle)=\rho(|\phi\rangle,|\psi\rangle)$
3. $\rho(|\psi\rangle,|\chi\rangle) \leq \rho(|\psi\rangle,|\phi\rangle)+\rho(|\phi\rangle,|\chi\rangle)$ (triangle identity) We say that the metric is induced by the norm if

$$
\rho(|\psi\rangle,|\phi\rangle)=\| \psi\rangle-|\phi\rangle \|
$$

So the Hilbert space is normed and it is a metric space. What else?
4. Hilbert space is also a complete metric space

We say that a metric space is complete if every Cauchy sequence of vectors, i.e.

$$
\|\left|\psi_{n}\right\rangle-\left|\psi_{m}\right\rangle \| \rightarrow 0 \text { as } m, n \rightarrow \infty
$$

converges to a limit vector in the space.

We need this condition to be able to handle systems whose states are vectors in infinite-dimensional Hilbert spaces, i.e. systems with infinite degrees of freedom.

Representation of a quantum mechanical state

Can we be more concrete about quantum states? What really is a ket $|\psi\rangle$?
Let us say we have the two-dimensional Hilbert space \mathcal{H} with the basis

$$
\mathcal{B}=\{|\uparrow\rangle,|\downarrow\rangle\}
$$

We now consider a ket, or a vector, in this Hilbert space

$$
|\psi\rangle \in \mathcal{H}
$$

It is to be said that at this stage this vector is a very abstract entity.

We wish to make it more concrete by expressing the vector in the representation given by the basis above \mathcal{B}.

We will first introduce the completeness relation which is a useful way of expressing an identity operator on the Hilbert space.

In our specific example, the completeness relation has the form

$$
|\uparrow\rangle\langle\uparrow|+|\downarrow\rangle\langle\downarrow|=\hat{1}
$$

We use it to define the representations of $|\psi\rangle$

$$
\begin{aligned}
|\psi\rangle & =\hat{1}|\psi\rangle=(|\uparrow\rangle\langle\uparrow|+|\downarrow\rangle\langle\downarrow|)|\psi\rangle \\
& =|\uparrow\rangle\langle\uparrow \mid \psi\rangle+|\downarrow\rangle\langle\downarrow \mid \psi\rangle \\
& =\langle\uparrow \mid \psi\rangle|\uparrow\rangle+\langle\downarrow \mid \psi\rangle|\downarrow\rangle \\
& =c_{\uparrow}|\uparrow\rangle+c_{\downarrow}|\downarrow\rangle
\end{aligned}
$$

where the probability amplitudes are explicitly $c_{\uparrow}=\langle\uparrow \mid \psi\rangle$ and $c_{\downarrow}=\langle\downarrow \mid \psi\rangle$.

It is easy to verify in our case that the completeness relation is an identity operator using the matrix representation

$$
|\uparrow\rangle\langle\uparrow|+|\downarrow\rangle\langle\downarrow|=\binom{1}{0}\left(\begin{array}{ll}
1 & 0
\end{array}\right)+\binom{0}{1}\left(\begin{array}{ll}
0 & 1
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)+\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)=\hat{1}
$$

More generally, the completeness relation is given as

$$
\sum_{i}\left|\phi_{i}\right\rangle\left\langle\phi_{i}\right|=\hat{1}
$$

where the sum goes over all basis vectors $\mathcal{B}=\left\{\left|\phi_{1}\right\rangle,\left|\phi_{2}\right\rangle \ldots\right\}$.
Our state can now be expanded into a a specific superposition of the basis vectors $\left\{\left|\phi_{i}\right\rangle\right\}$

$$
|\psi\rangle=\sum_{i}\left|\phi_{i}\right\rangle \underbrace{\left\langle\phi_{i} \mid \psi\right\rangle}_{\text {a number } c_{i} \in \mathbb{C}}=\sum_{i} c_{i}\left|\phi_{i}\right\rangle
$$

What about a representation in a continuous case, for example a free particle?

The completeness relation:
We can choose as a suitable basis the set of eigenstates of the position operator \hat{X}, that is, the vectors satisfying

$$
\hat{X}|x\rangle=x|x\rangle
$$

where x is a position in one-dimensional space. Generalization to three dimensions is straightforward as we will see it later.

Since position is a continuous physical entity, the completeness relation is an integral

$$
\int_{-\infty}^{\infty}|x\rangle\langle x| \mathrm{d} x=\hat{1}
$$

Coordinate representation

$$
\begin{aligned}
|\psi\rangle & \in \mathcal{H} \\
|\psi\rangle & =\int_{-\infty}^{\infty}|x\rangle\langle x \mid \psi\rangle \mathrm{d} x \\
& =\int_{-\infty}^{\infty} \psi(x)|x\rangle \mathrm{d} x
\end{aligned}
$$

$\{\psi(x)\}$ are coefficients of the expansion of $|\psi\rangle$ using the basis given by the eigenvectors of the operator \hat{X}, called wavefunction.

Inner product in coordinate representation

$$
\left\langle\psi_{1} \mid \psi_{2}\right\rangle=\left\langle\psi_{1}\right|\left(\int_{-\infty}^{\infty}|x\rangle\langle x| \mathrm{d} x\right)\left|\psi_{2}\right\rangle=\int_{-\infty}^{\infty}\left\langle\psi_{1} \mid x\right\rangle\left\langle x \mid \psi_{2}\right\rangle \mathrm{d} x=\int_{-\infty}^{\infty} \psi_{1}^{*}(x) \psi_{2}(x) \mathrm{d} x
$$

Momentum representation
is constructed using the completeness relation based on the momentum eigenstates, satisfying the eigenvalue equation $\hat{P}|p\rangle=p|p\rangle$, as follows

$$
\begin{aligned}
|\psi\rangle & =\int_{-\infty}^{\infty}|p\rangle\langle p \mid \psi\rangle \mathrm{d} p \\
& =\int_{-\infty}^{\infty} \psi(p)|p\rangle \mathrm{d} p
\end{aligned}
$$

$\{\psi(p)\}$ are coefficients of the expansion of $|\psi\rangle$ using the basis given by the eigenvectors of the operator \hat{P}, called wavefunction in the momentum representation.

Inner product in momentum representation

$$
\left\langle\psi_{1} \mid \psi_{2}\right\rangle=\left\langle\psi_{1}\right|\left(\int_{-\infty}^{\infty}|p\rangle\langle p| \mathrm{d} p\right)\left|\psi_{2}\right\rangle=\int_{-\infty}^{\infty}\left\langle\psi_{1} \mid p\right\rangle\left\langle p \mid \psi_{2}\right\rangle \mathrm{d} p=\int_{-\infty}^{\infty} \psi_{1}^{*}(p) \psi_{2}(p) \mathrm{d} p
$$

SECOND POSTULATE

Every measurable physical quantity \mathcal{A} is described by an operator \hat{A} acting on \mathcal{H}; this operator is an observable.

An operator $\hat{A}: \mathcal{E} \rightarrow \mathcal{F}$ such that $\left|\psi^{\prime}\right\rangle=\hat{A}|\psi\rangle$ for
and $|\psi\rangle \in \underbrace{\mathcal{E}}_{\text {domain } D(\hat{A})}$

Properties:

1. Linearity: $\hat{A} \sum_{i} c_{i}\left|\phi_{i}\right\rangle=\sum_{i} c_{i} \hat{A}\left|\phi_{i}\right\rangle$
2. Equality: $\hat{A}=\hat{B}$ iff $\hat{A}|\psi\rangle=\hat{B}|\psi\rangle$ and $D(\hat{A})=D(\hat{B})$
3. Sum: $\hat{C}=\hat{A}+\hat{B}$ iff $\hat{C}|\psi\rangle=\hat{A}|\psi\rangle+\hat{B}|\psi\rangle$
4. Product: $\hat{C}=\hat{A} \hat{B}$ iff

$$
\hat{C}|\psi\rangle=\hat{A} \hat{B}|\psi\rangle=\hat{A}(\hat{B}|\psi\rangle)=\hat{A}|\hat{B} \psi\rangle
$$

Commutator and anticommutator

In contrast to numbers, a product of operators is generally not commutative, i.e.

$$
\hat{A} \hat{B} \neq \hat{B} \hat{A}
$$

For example: three vectors $|x\rangle,|y\rangle$ and $|z\rangle$ and two operators \hat{R}_{x} and \hat{R}_{y} such that:

$$
\begin{array}{ll}
\hat{R}_{x}|x\rangle=|x\rangle, & \hat{R}_{y}|x\rangle=-|z\rangle, \\
\hat{R}_{x}|y\rangle=|z\rangle, & \hat{R}_{y}|y\rangle=|y\rangle, \\
\hat{R}_{x}|z\rangle=-|y\rangle, & \hat{R}_{y}|z\rangle=|x\rangle
\end{array}
$$

then

$$
\begin{array}{r}
\hat{R}_{x} \hat{R}_{y}|z\rangle=\hat{R}_{x}|x\rangle=|x\rangle \quad \neq \\
\hat{R}_{y} \hat{R}_{x}|z\rangle=-\hat{R}_{y}|y\rangle=-|y\rangle
\end{array}
$$

Commutativity is inherent to classical mechanics. All physical quantities are represented by mathematical entities that are commutative. Moreover, specifying for example positions and momenta of a particle at a given time provides a complete description of its mechanical state.

In quantum mechanics, physical quantities are represented by operators that are not commutative in general. This noncommutativity is the very essence of quantum world and has important consequences like the Heisenberg uncertainty relation. Indeed, we can not obtain a sharp value of both position and momentum of a particle.

The most complete description of a quantum mechanical system is given by

> the Complete Set of Commuting Observables or C.S.C.O.

An operator $[\hat{A}, \hat{B}]=\hat{A} \hat{B}-\hat{B} \hat{A}$ is called commutator.
We say that \hat{A} and \hat{B} commute iff $[\hat{A}, \hat{B}]=0$ in which case also $[f(\hat{A}), f(\hat{B})]=0$.
Basic properties of commutators:

$$
\begin{aligned}
{[\hat{A}, \hat{B}] } & =-[\hat{B}, \hat{A}] \\
{[\hat{A}, \hat{B}+\hat{C}] } & =[\hat{A}, \hat{B}]+[\hat{A}, \hat{C}] \\
{[\hat{A}, \hat{B} \hat{C}] } & =[\hat{A}, \hat{B}] \hat{C}+\hat{B}[\hat{A}, \hat{C}]
\end{aligned}
$$

the Jacobi identity:

$$
[\hat{A},[\hat{B}, \hat{C}]]+[\hat{B},[\hat{C}, \hat{A}]]+[\hat{C},[\hat{A}, \hat{B}]]=0
$$

An operator $\{\hat{A}, \hat{B}\}=\hat{A} \hat{B}+\hat{B} \hat{A}$ is called anticommutator. Clearly

$$
\{\hat{A}, \hat{B}\}=\{\hat{B}, \hat{A}\}
$$

Types of operators (examples)

1. \hat{A} is bounded iff $\exists \beta>0$ such that $\| \hat{A}|\psi\rangle\|\leq \beta\| \psi\rangle \|$ for all $|\psi\rangle \in D(\hat{A})$.

In quantum mechanics, the domain $D(\hat{A})$ is the whole Hilbert space \mathcal{H}.

Infimum of β is called the norm of the operator \hat{A}.
2. Let \hat{A} be a bounded operator, then there is an adjoint operator \hat{A}^{\dagger} such that

$$
\begin{aligned}
& \left\langle\psi_{1} \mid \hat{A}^{\dagger} \psi_{2}\right\rangle \\
& =\left\langle\hat{A} \psi_{1} \mid \psi_{2}\right\rangle \\
\text { i.e. } \quad\left\langle\psi_{1} \mid \hat{A}^{\dagger} \psi_{2}\right\rangle & =\left\langle\psi_{2} \mid \hat{A} \psi_{1}\right\rangle^{*}
\end{aligned}
$$

for all $\left|\psi_{1}\right\rangle,\left|\psi_{2}\right\rangle \in \mathcal{H}$.

Properties:

$$
\begin{aligned}
\left\|\hat{A}^{\dagger}\right\| & =\|\hat{A}\| \\
\left(\hat{A}^{\dagger}\right)^{\dagger} & =\hat{A} \\
(\hat{A}+\hat{B})^{\dagger} & =\hat{A}^{\dagger}+\hat{B}^{\dagger} \\
(\hat{A} \hat{B})^{\dagger} & =\hat{B}^{\dagger} \hat{A}^{\dagger} \text { (the order changes) } \\
(\lambda \hat{A})^{\dagger} & =\lambda^{*} \hat{A}^{\dagger}
\end{aligned}
$$

How can we construct an adjoint?
If we have an operator in a matrix representation, so it is a matrix, then

$$
\hat{A}^{\dagger}=\left(A^{\mathrm{T}}\right)^{*}=\text { transpose and complex conjugation }
$$

3. \hat{A} is called hermitian or selfadjoint if $\hat{A}^{\dagger}=\hat{A}, \quad$ or $\langle\hat{A} \phi \mid \psi\rangle=\langle\phi \mid \hat{A} \psi\rangle$.

This is the property of quantum observables!

Their eigenvalues are real numbers, e.g. $\hat{X}|x\rangle=x|x\rangle$ or $\hat{H}|E\rangle=E|E\rangle$
4. \hat{A} is positive if $\langle\psi| \hat{A}|\psi\rangle \geq 0$ for all $|\psi\rangle \in \mathcal{H}$
5. Let \hat{A} be an operator. If there exists an operator \hat{A}^{-1} such that $\hat{A} \hat{A}^{-1}=\hat{A}^{-1} \hat{A}=\hat{1}$ (identity operator) then \hat{A}^{-1} is called an inverse operator to \hat{A}

Properties:

$$
\begin{aligned}
(\hat{A} \hat{B})^{-1} & =\hat{B}^{-1} \hat{A}^{-1} \\
\left(\hat{A}^{\dagger}\right)^{-1} & =\left(\hat{A}^{-1}\right)^{\dagger}
\end{aligned}
$$

6. an operator \hat{U} is called unitary if $\hat{U}^{\dagger}=\hat{U}^{-1}$, i.e. $\hat{U} \hat{U}^{\dagger}=\hat{U}^{\dagger} \hat{U}=\hat{1}$.

Example: Quantum evolution operator

$$
|\psi(t)\rangle=e^{-\frac{i}{\hbar} \hat{H} t}|\psi(0)\rangle=\hat{U}|\psi(0)\rangle
$$

7. An operator \hat{P} satisfying $\hat{P}=\hat{P}^{\dagger}=\hat{P}^{2}$ is a projection operator or projector e.g. if $\left|\psi_{k}\right\rangle$ is a normalized vector then

$$
\hat{P}_{k}=\left|\psi_{k}\right\rangle\left\langle\psi_{k}\right|
$$

is the projector onto one-dimensional space spanned by all vectors linearly dependent on $\left|\psi_{k}\right\rangle$.

Composition of operators (by example)

1. Direct sum

If you can write an operator as

$$
\hat{A}=\left(\begin{array}{ccccc}
b_{11} & b_{12} & 0 & 0 & 0 \\
b_{21} & b_{22} & 0 & 0 & 0 \\
0 & 0 & c_{11} & c_{12} & c_{13} \\
0 & 0 & c_{21} & c_{22} & c_{23} \\
0 & 0 & c_{31} & c_{32} & c_{33}
\end{array}\right)
$$

then it is a direct sum $\hat{A}=\hat{B} \oplus \hat{C}$ where \hat{B} acts on \mathcal{H}_{B} (2 dimensional) and \hat{C} acts on \mathcal{H}_{C} (3 dimensional)

$$
\hat{B}=\left(\begin{array}{ll}
b_{11} & b_{12} \\
b_{21} & b_{22}
\end{array}\right) \quad \text { and } \quad \hat{C}=\left(\begin{array}{lll}
c_{11} & c_{12} & c_{13} \\
c_{21} & c_{22} & c_{23} \\
c_{31} & c_{32} & c_{33}
\end{array}\right)
$$

and \hat{A} acts on the direct sum of Hilber spaces $\mathcal{H}_{B} \oplus \mathcal{H}_{C}$.

Properties:

$$
\begin{aligned}
\operatorname{Tr}(\hat{B} \oplus \hat{C}) & =\operatorname{Tr}(\hat{B})+\operatorname{Tr}(\hat{C}) \\
\operatorname{det}(\hat{B} \oplus \hat{C}) & =\operatorname{det}(\hat{B}) \operatorname{det}(\hat{C})
\end{aligned}
$$

Applications: Addition of angular momentum
A system of two spin half particles is described by a ket in 4-dimensional Hilbert space

$$
\mathcal{H}=\mathcal{H}_{j=0} \oplus \mathcal{H}_{j=1}
$$

where $\mathcal{H}_{j=0}$ is spanned by a singlet state and $\mathcal{H}_{j=1}$ by a triplet state.
2. Direct product $\hat{A}=\hat{B} \otimes \hat{C}$:

Let $|\psi\rangle \in \mathcal{H}_{B},|\phi\rangle \in \mathcal{H}_{C},|\chi\rangle \in \mathcal{H}_{B} \otimes \mathcal{H}_{C}$, then

$$
\begin{aligned}
& \hat{A}|\chi\rangle=(\hat{B} \otimes \hat{C})(|\psi\rangle \otimes|\phi\rangle)=\hat{B}|\psi\rangle \otimes \hat{C}|\phi\rangle=\hat{B}|\psi\rangle \hat{C}|\phi\rangle \\
& \hat{A}=\left(\begin{array}{llllll}
b_{11} c_{11} & b_{11} c_{12} & b_{11} c_{13} & b_{12} c_{11} & b_{12} c_{12} & b_{12} c_{13} \\
b_{11} c_{21} & b_{11} c_{22} & b_{11} c_{23} & b_{12} c_{21} & b_{12} c_{22} & b_{12} c_{23} \\
b_{11} c_{31} & b_{11} c_{32} & b_{11} c_{33} & b_{12} c_{31} & b_{12} c_{32} & b_{12} c_{33} \\
b_{21} c_{11} & b_{21} c_{12} & b_{21} c_{13} & b_{22} c_{11} & b_{22} c_{12} & b_{22} c_{13} \\
b_{21} c_{21} & b_{21} c_{22} & b_{21} c_{23} & b_{22} c_{21} & b_{22} c_{22} & b_{22} c_{23} \\
b_{21} c_{31} & b_{21} c_{32} & b_{21} c_{33} & b_{22} c_{31} & b_{22} c_{32} & b_{22} c_{33}
\end{array}\right)
\end{aligned}
$$

Eigenvalues and eigenvectors
Solving a quantum mechanical system means to find the eigenvalues and eigenvectors of the complete set of commuting observables (C.S.C.O.)

1. The eigenvalue equation

$$
\hat{A}\left|\psi_{\alpha}\right\rangle=\underbrace{\alpha}_{\text {eigenvalue }} \underbrace{\left|\psi_{\alpha}\right\rangle}_{\text {eigenvector }}
$$

If $n>1$ vectors satisfy the eigenvalue equation for the same eigenvalue α, we say the eigenvalue is n-fold degenerate.
2. The eigenvalues of a self-adjoint operator \hat{A}, which are observables and represent physical quantities, are real numbers

$$
\alpha\left\langle\psi_{\alpha} \mid \psi_{\alpha}\right\rangle=\left\langle\psi_{\alpha} \mid \hat{A} \psi_{\alpha}\right\rangle=\left\langle\hat{A} \psi_{\alpha} \mid \psi_{\alpha}\right\rangle^{*}=\alpha^{*}\left\langle\psi_{\alpha} \mid \psi_{\alpha}\right\rangle \Rightarrow \alpha=\alpha^{*} \in \mathbb{R}
$$

3. Eigenvectors of self-adjoint operators corresponding to distinct eigenvalues are orthogonal.

Proof: If $\beta \neq \alpha$ is also an eigenvalue of \hat{A} then

$$
\left\langle\psi_{\alpha} \mid \hat{A} \psi_{\beta}\right\rangle=\beta\left\langle\psi_{\alpha} \mid \psi_{\beta}\right\rangle
$$

and also

$$
\left\langle\psi_{\alpha} \mid \hat{A} \psi_{\beta}\right\rangle=\left\langle\psi_{\beta} \mid \hat{A} \psi_{\alpha}\right\rangle^{*}=\alpha^{*}\left\langle\psi_{\beta} \mid \psi_{\alpha}\right\rangle^{*}=\alpha\left\langle\psi_{\alpha} \mid \psi_{\beta}\right\rangle
$$

which implies

$$
\left\langle\psi_{\alpha} \mid \psi_{\beta}\right\rangle=0
$$

4. Matrix representation

Operator is uniquely defined by its action on the basis vectors of the Hilbert space.
Let $\mathcal{B}=\left\{\left|\psi_{j}\right\rangle\right\}$ be a basis of a finite-dimensional \mathcal{H}

$$
\begin{aligned}
\hat{A}\left|\psi_{j}\right\rangle & =\sum_{k}\left|\psi_{k}\right\rangle\left\langle\psi_{k}\right| \hat{A}\left|\psi_{j}\right\rangle \\
& =\sum_{k} A_{k j}\left|\psi_{k}\right\rangle
\end{aligned}
$$

where $A_{k j}=\left\langle\psi_{k}\right| \hat{A}\left|\psi_{j}\right\rangle$ are the matrix elements of the operator \hat{A} in the matrix representation given by the basis \mathcal{B}.
For practical calculations

$$
\hat{A}=\sum_{k j}\left|\psi_{k}\right\rangle\left\langle\psi_{k}\right| \hat{A}\left|\psi_{j}\right\rangle\left\langle\psi_{j}\right|=\sum_{k j} A_{k j}\left|\psi_{k}\right\rangle\left\langle\psi_{j}\right|
$$

5. Spectral decomposition

Assume that the eigenvectors of \hat{A} define a basis $\mathcal{B}=\left\{\left|\psi_{j}\right\rangle\right\}$, then $A_{k j}=\left\langle\psi_{k}\right| \hat{A}\left|\psi_{j}\right\rangle=\alpha_{j} \delta_{k j}$.
Operator in this basis is a diagonal matrix with eigenvalues on the diagonal

$$
\begin{aligned}
\hat{A} & =\sum_{k j} A_{k j}\left|\psi_{k}\right\rangle\left\langle\psi_{j}\right| \\
& =\sum_{j} \alpha_{j}\left|\psi_{j}\right\rangle\left\langle\psi_{j}\right| \\
& =\sum_{j} \alpha_{j} \hat{E}_{j}
\end{aligned}
$$

\hat{E}_{j} is a projector onto 1-dim. space spanned by $\left|\psi_{j}\right\rangle \Rightarrow$ Spectral decomposition!

Generalization to the continuous spectrum

$$
\begin{aligned}
\hat{A}|\alpha\rangle & =\alpha|\alpha\rangle \\
\left\langle\alpha^{\prime} \mid \alpha\right\rangle & =\delta\left(\alpha-\alpha^{\prime}\right)
\end{aligned}
$$

δ-function [Cohen-Tannoudji II Appendix II]
Spectral decomposition

$$
\hat{A}=\int_{\alpha_{\min }}^{\alpha_{\max }} \alpha|\alpha\rangle\langle\alpha| \mathrm{d} \alpha
$$

Completeness relation

$$
\int_{\alpha_{\min }}^{\alpha_{\max }}|\alpha\rangle\langle\alpha| \mathrm{d} \alpha=\hat{\imath}
$$

Wavefunction

$$
\psi(\alpha)=\langle\alpha \mid \psi\rangle
$$

Functions of operators

Generally, we need to use the spectral decomposition of the operator

$$
\hat{A}=\sum_{j} \alpha_{j}\left|\psi_{j}\right\rangle\left\langle\psi_{j}\right|
$$

where $\left|\psi_{j}\right\rangle$ is the eigenvector of \hat{A} corresponding to the eigenvalue α_{j} :

$$
\hat{A}\left|\psi_{j}\right\rangle=\alpha_{j}\left|\psi_{j}\right\rangle .
$$

Then the function of \hat{A} is given as

$$
f(\hat{A})=\sum_{j} f\left(\alpha_{j}\right)\left|\psi_{j}\right\rangle\left\langle\psi_{j}\right|
$$

Also, $\hat{A}^{2}=\hat{A} \hat{A}$, then $\hat{A}^{n}=\hat{A} \hat{A}^{n-1}$ and if a function $f(\xi)=\sum_{n} a_{n} \xi^{n}$, then by the function of an operator $f(\hat{A})$ we mean

$$
f(\hat{A})=\sum_{n} a_{n} \hat{A}^{n}
$$

e.g.

$$
e^{\hat{A}}=\sum_{n=0}^{\infty} \frac{1}{n!} \hat{\Lambda}^{n}
$$

Inner product

$$
\left\langle\psi_{1} \mid \psi_{2}\right\rangle=\int_{\alpha_{\min }}^{\alpha_{\max }} \psi_{1}^{*}(\alpha) \psi_{2}(\alpha) \mathrm{d} \alpha
$$

Coordinate and momentum operators
In coordinate representation (x-representation)

$$
\begin{gathered}
\hat{X}=\int_{-\infty}^{\infty} x|x\rangle\langle x| \mathrm{d} x \quad \text { spectral decomposition } \\
\text { and } \int_{-\infty}^{\infty}|x\rangle\langle x| \mathrm{d} x=\hat{1} \quad \text { completeness relation } \\
\qquad|\psi\rangle=\int_{-\infty}^{\infty}|x\rangle\langle x \mid \psi\rangle \mathrm{d} x=\int_{-\infty}^{\infty} \psi(x)|x\rangle \mathrm{d} x
\end{gathered}
$$

What about momentum operator \hat{P} ?
It has to satisfy the canonical commutation relation

$$
\begin{aligned}
{[\hat{X}, \hat{P}]|\psi\rangle } & =\hat{X} \hat{P}|\psi\rangle-\hat{P} \hat{X}|\psi\rangle \\
& =i \hbar|\psi\rangle
\end{aligned}
$$

which in coordinate representation is

$$
x \hat{P}^{(x)} \psi(x)-\hat{P}^{(x)} x \psi(x)=i \hbar \psi(x)
$$

This is satisfied by

$$
\hat{P}^{(x)}=-i \hbar \frac{\partial}{\partial x}
$$

In momentum representation

$$
\begin{aligned}
\mathcal{B}=\{|p\rangle\}: & & \hat{P} & =\int_{-\infty}^{\infty} p|p\rangle\langle p| \mathrm{d} p \\
\text { and } & & \hat{X} & =i \hbar \frac{\partial}{\partial p}
\end{aligned}
$$

More on coordinate and momentum representation
Coordinate representation

$$
\begin{array}{r}
\hat{X}=\int_{-\infty}^{\infty} x|x\rangle\langle x| \mathrm{d} x \quad \hat{X}|x\rangle=x|x\rangle \\
\hat{P}^{(x)}=-i \hbar \frac{\partial}{\partial x} \Leftarrow[\hat{X}, \hat{P}]=i \hbar
\end{array}
$$

For all $p \in \mathbb{R}$, there is a solution to the eigenvalue equation

$$
-i \hbar \frac{\mathrm{~d}}{\mathrm{~d} x} \psi_{p}(x)=p \psi_{p}(x)
$$

where $\psi_{p}(x)$ is the eigenstate of the momentum operator in coordinate representation corresponding to eigenvalue p

$$
\hat{P}|p\rangle=p|p\rangle \quad|p\rangle=\int_{-\infty}^{\infty}|x\rangle\langle x \mid p\rangle \mathrm{d} x=\int_{-\infty}^{\infty} \psi p(x)|x\rangle \mathrm{d} x
$$

and every solution depends linearly on function

$$
\psi_{p}(x)=\frac{1}{\sqrt{2 \pi \hbar}} e^{\frac{i}{\hbar} p x}=\langle x \mid p\rangle
$$

which satisfies the normalization condition

$$
\int_{-\infty}^{\infty} \psi_{p^{\prime}}^{*}(x) \psi_{p}(x) \mathrm{d} x=\delta\left(p-p^{\prime}\right)
$$

Similarly

$$
\int_{-\infty}^{\infty} \psi_{p}^{*}\left(x^{\prime}\right) \psi_{p}(x) \mathrm{d} p=\delta\left(x-x^{\prime}\right)
$$

Momentum representation

$$
\hat{P}=\int_{-\infty}^{\infty} p|p\rangle\langle p| \mathrm{d} p
$$

The completeness relation

$$
\begin{gathered}
\int_{-\infty}^{\infty}|p\rangle\langle p| \mathrm{d} p=\hat{1} \\
|\phi\rangle=\int_{-\infty}^{\infty}|p\rangle\langle p \mid \phi\rangle \mathrm{d} p=\int_{-\infty}^{\infty} \overbrace{\phi^{(p)}(p)}^{\text {momentum representation }}|p\rangle \mathrm{d} p
\end{gathered}
$$

How is the wavefunction $\phi^{(p)}(p)$, which describes the ket $|\phi\rangle$ in the momentum representation, related to $\phi(x)$ which describes the same vector in the coordinate representation?

$$
\phi^{(p)}(p)=\int_{-\infty}^{\infty}\langle p \mid x\rangle\langle x \mid \phi\rangle \mathrm{d} x=\frac{1}{\sqrt{2 \pi \hbar}} \int_{-\infty}^{\infty} e^{-\frac{i}{\hbar} p x} \phi(x) \mathrm{d} x
$$

$\phi^{(p)}(p)$ is the Fourier transform of $\phi(x)$
$\phi(x)$ is the inverse F.T. of $\phi^{(p)}(p)$

$$
\phi(x)=\frac{1}{\sqrt{2 \pi \hbar}} \int_{-\infty}^{\infty} e^{+\frac{i}{\hbar} p x} \phi^{(p)}(p) \mathrm{d} p
$$

(Cohen-Tannoudji Q.M. II Appendix I)
The Parseval-Plancharel formula

$$
\int_{-\infty}^{\infty} \phi^{*}(x) \psi(x) \mathrm{d} x=\int_{-\infty}^{\infty} \phi^{(p) *}(p) \psi^{(p)}(p) \mathrm{d} p
$$

F.T. in 3 dimensions:

$$
\phi^{(p)}(\vec{p})=\frac{1}{(2 \pi \hbar)^{3 / 2}} \int e^{-\frac{i}{\hbar} \vec{p} \cdot \vec{r}} \phi(\vec{r}) \mathrm{d}^{3} r
$$

δ-"function"

1. Definition and principal properties

Consider $\delta^{\epsilon}(x)$:

$$
\delta^{\epsilon}(x)= \begin{cases}\frac{1}{\epsilon} & \text { for }-\frac{\epsilon}{2} \leq x \leq \frac{\epsilon}{2} \\ 0 & \text { for }|x|>\frac{\epsilon}{2}\end{cases}
$$

and evaluate $\int_{-\infty}^{\infty} \delta^{\epsilon}(x) f(x) \mathrm{d} x$ (where $f(x)$ is an arbitrary function defined at $x=0$) if ϵ is very small $(\epsilon \rightarrow 0)$

$$
\begin{aligned}
\int_{-\infty}^{\infty} \delta^{\epsilon}(x) f(x) \mathrm{d} x & \approx f(0) \int_{-\infty}^{\infty} \delta^{\epsilon}(x) \mathrm{d} x \\
& =f(0)
\end{aligned}
$$

the smaller the ϵ, the better the approximation.
For the limit $\epsilon=0, \delta(x)=\lim _{\epsilon \rightarrow 0} \delta^{\epsilon}(x)$.

$$
\int_{-\infty}^{\infty} \delta(x) f(x) \mathrm{d} x=f(0)
$$

More generally

$$
\int_{-\infty}^{\infty} \delta\left(x-x_{0}\right) f(x) \mathrm{d} x=f\left(x_{0}\right)
$$

Properties

(i) $\delta(-x)=\delta(x)$
(ii) $\delta(c x)=\frac{1}{|c|} \delta(x)$
and more generally

$$
\delta[g(x)]=\sum_{j} \frac{1}{\left|g^{\prime}\left(x_{j}\right)\right|} \delta\left(x-x_{j}\right)
$$

$\left\{x_{j}\right\}$ simple zeroes of $g(x)$ i.e. $g\left(x_{j}\right)=0$ and $g^{\prime}\left(x_{j}\right) \neq 0$
(iii) $x \delta\left(x-x_{0}\right)=x_{0} \delta\left(x-x_{0}\right)$
and in particular $x \delta(x)=0$
and more generally $g(x) \delta\left(x-x_{0}\right)=g\left(x_{0}\right) \delta\left(x-x_{0}\right)$

$$
\text { (iv) } \quad \int_{-\infty}^{\infty} \delta(x-y) \delta(x-z) \mathrm{d} x=\delta(y-z)
$$

The δ-"function" and the Fourier transform

$$
\begin{aligned}
\psi^{(p)}(p) & =\frac{1}{\sqrt{2 \pi \hbar}} \int_{-\infty}^{\infty} e^{-\frac{i}{\hbar} p x} \psi(x) \mathrm{d} x \\
\psi(x) & =\frac{1}{\sqrt{2 \pi \hbar}} \int_{-\infty}^{\infty} e^{\frac{i}{\hbar} p x} \psi^{(p)}(p) \mathrm{d} p
\end{aligned}
$$

The Fourier transform $\delta^{(p)}(p)$ of $\delta\left(x-x_{0}\right)$:

$$
\begin{aligned}
\delta^{(p)}(p) & =\frac{1}{\sqrt{2 \pi \hbar}} \int_{-\infty}^{\infty} e^{-\frac{i}{\hbar} p x} \delta\left(x-x_{0}\right) \mathrm{d} x \\
& =\frac{1}{\sqrt{2 \pi \hbar}} e^{-\frac{i}{\hbar} p x_{0}}
\end{aligned}
$$

The inverse F.T.

$$
\begin{aligned}
\delta\left(x-x_{0}\right) & =\frac{1}{\sqrt{2 \pi \hbar}} \int_{-\infty}^{\infty} e^{\frac{i}{\hbar} p x} \delta^{(p)}(p) \mathrm{d} p \\
& =\frac{1}{\sqrt{2 \pi \hbar}} \int_{-\infty}^{\infty} e^{\frac{i}{\hbar} p x} \frac{1}{\sqrt{2 \pi \hbar}} e^{-\frac{i}{\hbar} p x_{0}} \mathrm{~d} p \\
& =\frac{1}{2 \pi \hbar} \int_{-\infty}^{\infty} e^{\frac{i}{\hbar} p\left(x-x_{0}\right)} \mathrm{d} p \\
& =\frac{1}{2 \pi} \int_{-\infty}^{\infty} e^{i k\left(x-x_{0}\right)} \mathrm{d} k
\end{aligned}
$$

Derivative of $\delta(x)$

$$
\begin{aligned}
& \int_{-\infty}^{\infty} \delta^{\prime}\left(x-x_{0}\right) f(x) \mathrm{d} x= \\
& -\int_{-\infty}^{\infty} \delta\left(x-x_{0}\right) f^{\prime}(x) \mathrm{d} x=-f^{\prime}\left(x_{0}\right)
\end{aligned}
$$

THIRD POSTULATE
 (Measurement I)

The only possible result of the measurement of a physical quantity \mathcal{A} is one of the eigenvalues of the corresponding observable \hat{A}.

FOURTH POSTULATE

(Measurement II)

1. a discrete non-degenerate spectrum: When the physical quantity \mathcal{A} is measured on a system in the normalized state $|\psi\rangle$, the probability $\mathcal{P}\left(a_{n}\right)$ of obtaining the non-degenerate eigenvalue a_{n} of the corresponding physical observable \hat{A} is

$$
\mathcal{P}\left(a_{n}\right)=\left|\left\langle u_{n} \mid \psi\right\rangle\right|^{2}
$$

where $\left|u_{n}\right\rangle$ is the normalised eigenvector of \hat{A} associated with the eigenvalue a_{n}.
2. a discrete spectrum:

$$
\mathcal{P}\left(a_{n}\right)=\sum_{i=1}^{g_{n}}\left|\left\langle u_{n}^{i} \mid \psi\right\rangle\right|^{2}
$$

where g_{n} is the degree of degeneracy of a_{n} and $\left\{\left|u_{n}^{i}\right\rangle\right\}\left(i=1, \ldots, g_{n}\right)$ is an orthonormal set of vectors which forms a basis in the eigenspace \mathcal{H}_{n} associated with the eigenvalue a_{n} of the observable \hat{A}.
3. a continuous spectrum: the probability $\mathrm{d} \mathcal{P}(\alpha)$ of obtaining result included between α and $\alpha+\mathrm{d} \alpha$ is

$$
\mathrm{d} \mathcal{P}(\alpha)=\left|\left\langle v_{\alpha} \mid \psi\right\rangle\right|^{2} \mathrm{~d} \alpha
$$

where $\left|v_{\alpha}\right\rangle$ is the eigenvector corresponding to the eigenvalue α of the observable \hat{A}.

FIFTH POSTULATE

(Measurement III)

If the measurement of the physical quantity \mathcal{A} on the system in the state $|\psi\rangle$ gives the result a_{n}, the state of the system immediately after the measurement is the mormalized projection

$$
\frac{\hat{P}_{n}|\psi\rangle}{\sqrt{\langle\psi| \hat{P}_{n}|\psi\rangle}}=\frac{\hat{P}_{n}|\psi\rangle}{\| \hat{P}_{n}|\psi\rangle \|}
$$

of $|\psi\rangle$ onto the eigensubspace associated with a_{n}.

SIXTH POSTULATE
 (Time Evolution)

The time evolution of the state vector $|\psi(t)\rangle$ is governed by the Schrödinger equation

$$
i \hbar \frac{\mathrm{~d}}{\mathrm{~d} t}|\psi(t)\rangle=\hat{H}(t)|\psi(t)\rangle
$$

where $\hat{H}(t)$ is the observable associated with the total energy of the system.
Classically

$$
H(\vec{r}, \vec{p})=\frac{\vec{p}^{2}}{2 m}+V(\vec{r})
$$

Quantum mechanics

$$
\left.\begin{array}{l}
\vec{r} \rightarrow \hat{\vec{R}} \\
\vec{p} \rightarrow \hat{\vec{P}}
\end{array}\right\} \quad \hat{H}=\frac{\hat{\vec{P}}^{2}}{2 m}+V(\hat{\vec{R}})
$$

Canonical quantization (in the coordinate rep.)

$$
\begin{aligned}
& \hat{\vec{R}} \rightarrow \vec{r} \\
& \hat{P}_{i} \rightarrow-i \hbar \frac{\partial}{\partial x_{i}}=(-i \hbar \vec{\nabla})_{i} \\
& \Rightarrow \hat{H}=\underbrace{-\frac{\hbar^{2}}{2 m} \nabla^{2}}_{\text {kinetic energy }}+\underbrace{V(\vec{r})}_{\text {potential energy }}
\end{aligned}
$$

Formal solution of the Schrödinger equation gives the quantum evolution operator:

$$
\begin{aligned}
i \hbar \frac{\mathrm{~d}}{\mathrm{~d} t}|\psi(t)\rangle & =\hat{H}|\psi(t)\rangle \\
\Rightarrow \int_{0}^{t} \frac{\mathrm{~d}\left|\psi\left(t^{\prime}\right)\right\rangle}{\left|\psi\left(t^{\prime}\right)\right\rangle} & =-\frac{i}{\hbar} \int_{0}^{t} \hat{H} \mathrm{~d} t^{\prime}
\end{aligned}
$$

By integrating, we get the evolution operator

$$
|\psi(t)\rangle=e^{-\frac{i}{\hbar} \int_{0}^{t} \hat{H}\left(t^{\prime}\right) \mathrm{d} t^{\prime}}|\psi(0)\rangle=\hat{U}(t)|\psi(0)\rangle
$$

Its form is particularly simple if the Hamiltonian is time independent:

$$
|\psi(t)\rangle=e^{-\frac{i}{\hbar} \hat{H} t}|\psi(0)\rangle=\hat{U}(t)|\psi(0)\rangle
$$

