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Series Solutions of Linear Differential Equations

Introduction

Most linear higher order ODEs with variable coefficients cannot be solved in terms of

elementary functions. Instead a solution is seeked in the form of infinite series and

proceeds in a manner similar to the method of undetermined coefficients.

We will first study solutions about ordinary points. Given a linear second order ODE

y00 = f (x, y, y0)

we say that a point x = x0 is an ordinary point if, at this point, y and y0 can take on all

finite values and y00 remains finite.

On the other hand, if y00 becomes infinite for any finite choice of y and y0, point x = x0
is called a singular.



Review of power series

A power series in x � a, or power series centered on a, is an infinite series of the

form

1X

n=0
cn (x � a)n = c0 + c1(x � a) + c2(x � a)2 + . . . .

Examples:
Power series centered at a = �1:

P1
n=0 (x + 1)n

.

Power series in x, or centered on a = 0:
P1

n=0 2n�1 xn = x + 2x2 + 4x3 + . . . .



Convergence

A power series

1X

n=0
cn (x � a)n

is convergent at a specified value of x if its sequence of partial sums {S N(x)} con-

verges, that is, if

lim
N!1

S N(x) = lim
N!1

NX

n=0
cn (x � a)n

exists.

If the limit does not exist at x, the series is said to be divergent.



Interval of convergence

The interval of convergence is the set of all real numbers x for which the series

converges. Every power series has an interval of convergence.

Radius of convergence

Every power series has a radius of convergence R. If R > 0, then a power seriesP1
n=0 cn (x � a)n

converges for |x � a| < R and diverges for |x � a| > R.

If the series converges only at its center a, then R = 0.

If the series converges for all x, then R = 1.

Also, |x � a| < R is equivalent to a � R < x < a + R. A power series may or may not

converge at the endpoints a � R and a + R.



Absolute convergence

Within its interval of convergence a power series converges absolutely, that is, if x is

a number in the interval of convergence and is not an endpoint of the interval, then

the series of absolute values

1X

n=0

���cn (x � a)n���

converges.



Ratio test

Convergence of a power series can be determined by a ratio test:

Suppose that cn , 0 for all n, and that

lim
n!1

������
cn+1(x � a)n+1

cn(x � a)n

������ = |x � a| lim
n!1

�����
cn+1
cn

����� = L.

If L < 1 the power series converges absolutely;

if L > 1 the series diverges; and

if L = 1 the test is inconclusive.



Example For the power series
P1

n=1
(x�3)n

n2n the ratio test gives

lim
n!1

������
(x � 3)n+1/2n+1(n + 1)

(x � 3)n/2nn

������ = |x � 3| lim
n!1

n
2(n + 1)

=
1
2
|x � 3| .

The series converges absolutely for
1
2 |x � 3| < 1, or |x � 3| < 2, or 1 < x < 5 which is

referred as an open interval of convergence.

The series diverges for |x � 3| > 2, that is, for x < 1 and x > 5.

At the left endpoint x = 1 of the interval of convergence, the series of constantsP1
n=1[(�1)n/n] is convergent (by alternating series test).

At the right endpoint x = 5, the series
P1

n=1(1/n) is the divergent harmonic series.

The interval of convergence of the series is [1, 5) and the radius of convergence

is R = 2.



A power series defines a function

f (x) =
1X

n=0
cn (x � a)n

whose domain is the interval of convergence of the series.

If the radius of convergence is R > 0, then f (x) is continuous, differentiable, and

integrable on the interval (a � R, a + R).

Moreover, f 0(x) and

R
f (x) dx can be found by term-by-term differentiation of inte-

gration. Convergence at an endpoint may be either lost by differentiation or gained

via integration.



If

y =
1X

n=0
cnxn

is a power series in x, then the first two derivatives are

y0 =
1X

n=0
cnnxn�1 =

1X

n=1
cnnxn�1,

y00 =
1X

n=0
cnn(n � 1)xn�2 =

1X

n=2
cnn(n � 1)xn�2,

where the first term in the first derivative and the first two terms in the second deriva-

tive are zero and thus are omitted.



Identity property

If

y =
1X

n=0
cn(x � a)n = 0, R > 0,

for all numbers x in the interval of convergence, then cn = 0 for all n.

Analytic at a point

A function f is analytic at a point a if it can be represented by a power series in x � a
with a positive radius of convergence.



Examples

Functions such as ex
, cos x, sin x, ln(x � 1) can be represented using Taylor series:

ex = 1 +
x
1!
+

x2

2!
+ . . . =

1X

n=0

xn

n!

sin x = x � x3

3!
+

x5

5!
� . . . =

1X

n=0
(�1)n x2n+1

(2n + 1)!

cos x = 1 � x2

2!
+

x4

4!
� . . . =

1X

n=0
(�1)n x2n

(2n)!

for |x| < 1.

These Taylor series centered at 0, called Maclaurin series, show that ex
, sin x and

cos x are analytic at x = 0.



Arithmetic of power series

Power series can be combined through the operations of addition, multiplication and

division using procedures similar to addition, multiplication and division of polynomi-

als:

- we add coefficients of like powers of x,

- use the distributive law and collect like terms, and

- perform a long division.



Example

ex sin x =
0
BBBB@1 + x +

x2

2
+

x3

6
+

x4

24
+ . . .

1
CCCCA
0
BBBB@x � x3

6
+

x5

120
� x7

5040
. . .

1
CCCCA

= x + x2 +

 
�1

6
+

1
2

!
x3 +

 
�1

6
+

1
6

!
x4 +

 
1

120
� 1

12
+

1
24

!
x5 + . . .

= x + x2 +
x3

3
� x5

30
� . . . .

Since the power series for ex
and sin x converge for |x| < 1, the product series

converges on the same interval.



Shifting the summation index

It is important to simplify the sum of two or more power series, each series being

expressed as a summation on its own right, to an expression involving a single sum-

mation only.

Example: Write

1X

n=2
n(n � 1) cn xn�2 +

1X

n=0
cn xn+1

as one power series.



Solution:

It is necessary that

- both summation indices start with the same number and that

- the powers of x in each series be ”in phase”, i.e. if one series starts with a multiple

of, say, x to the first power, then we want the other series to start with the same

power:

1X

n=2
n(n � 1) cn xn�2 +

1X

n=0
cn xn+1 = 2.1 c2 x0 +

1X

n=3
n(n � 1) cn xn�2 +

1X

n=0
cn xn+1,

where both series on the r.h.s. start with the same power of x, i.e. x1
.



Now to get the same summation index, we let k = n�2 in the first series and k = n+1
in the second series:

2c2 +
1X

k=1
(k + 2)(k + 1)ck+2xk +

1X

k=1
ck�1xk.

Note that k is just a ”dummy” index; it is the value of the summation index that is

important.

We can now complete the solution:

1X

n=2
n(n � 1) cn xn�2 +

1X

n=0
cn xn+1 = 2c2 +

1X

k=1

⇥
(k + 2)(k + 1)ck+2 + ck�1

⇤
xk.


