
ORTHOGONAL FUNCTIONS AND FOURIER SERIES

Orthogonal functions

A function can be considered to be a generalization of a vector. Thus the vector
concepts like the inner product and orthogonality of vectors can be extended to func-
tions.

Inner product

Consider the vectors �u = u1�i + u2�j + u3�k and �v = v1�i + v2�j + v3�k in R3, then the inner
product or dot product of �u and �v is a real number, a scalar, defined as

(�u,�v) = u1v1 + u2v2 + u2v2 =
3�

k=1
ukvk



The inner product

(�u,�v) = u1v1 + u2v2 + u2v2 =
3�

k=1
ukvk

possesses the following properties

(i) (�u,�v) = (�v,�u)
(ii) (k�u,�v) = k(�u,�v)
(iii) (�u,�u) = 0 if �u = �0 and (�u,�u) > 0 if �u � �0
(iv) (�u + �v, �w) = (�u, �w) + (�v, �w)



Suppose that f1 and f2 are piecewise continuous functions defined on an interval
[a, b]. Since the definite integral on the interval of the product f1(x) f2(x) possesses
properties (i) - (iv) above.

Definition: Inner product of functions

The inner product of two functions f1 and f2 on an interval [a, b] is the number

( f1, f2) =
� b

a
f1(x) f2(x) dx



Definition: Orthogonal functions

Two functions f1 and f2 are said to be orthogonal on an interval [a, b] if

( f1, f2) =
� b

a
f1(x) f2(x) dx = 0

Example: f1(x) = x2 and f2(x) = x3 are orthogonal on the interval [−1, 1] since

( f1, f2) =
� 1

−1
x2 . x3 dx =

�
1
6

x6
�1

−1
= 0



Orthogonal sets

We are primarily interested in an infinite sets of orthogonal functions.

Definition: Orthogonal set

A set of real-valued functions {φ0(x), φ1(x), φ2(x), ...} is said to be orthogonal on an
interval [a, b] if

(φm, φn) =
� b

a
φm(x) φn(x) dx = 0, m � n



Orthonormal sets

The norm ||�u|| of a vector �u can be expressed using the inner product:

(�u,�u) = ||�u||2 ⇒ ||�u|| =
�

(�u,�u)

Similarly the square norm of a function φn is ||φn||2 = (φn, φn), and so the norm is
||φn|| =

�
(φn, φn). In other words, the square norm and the norm of a function φn in

an orthogonal set {φn(x)} are, respectively,

||φn||2 =
� b

a
φ2

n(x) dx and ||φn|| =
�� b

a
φ2

n(x) dx



Example 1: Orthogonal set of functions

Show that the set {1, cos x, cos 2x, ...} is orthogonal on the interval [−π, π]:
φ0 = 1, φn = cos nx

(φ0, φn) =
� π

−π
φ0(x) φn(x) dx =

� π

−π
cos nx dx

=

�
1
n

sin nx
�π

−π
=

1
n

[sin nπ − sin(−nπ)] = 0

and for m � n, using the triangle identity

(φm, φn) =
� π

−π
φm(x) φn(x) dx =

� π

−π
cos mx cos nx dx

=
1
2

� π

−π
[cos(m + n)x + cos(m − n)x] dx

=
1
2

�
sin(m + n)x

m + n
+

sin(m − n)x
m − n

�π

−π
= 0



Example 2: Norms
Find the norms of the functions given in the Example 1 above.

||φ0||2 =
� π

−π
dx = 2π

||φ0|| =
√

2π

||φn||2 =
� π

−π
cos2 nx dx =

1
2

� π

−π
[1 + cos 2nx] dx = π

||φn|| =
√
π

Any orthogonal set of nonzero functions {φn(x)}, n = 0, 1, 2... can be normalized, i.e.
made into an orthonormal set.
Example: An orthonormal set on the interval [−π, π]:

�
1√
2π
,
cos x√
π
,
cos 2x√
π
, ...

�



Vector analogy

Suppose �v1, �v2, and �v3 are three mutually orthogonal nonzero vectors in R3. Such an
orthogonal set can be used as a basis for R3, that is, any three-dimensional vector
can be written as a linear combination

�u = c1�v1 + c2�v2 + c3�v3

where ci, i = 1, 2, 3 are scalars called the components of the vector. Each component
can be expressed in terms of �u and the corresponding vector �vi:

(�u,�v1) = c1(�v1,�v1) + c2(�v2,�v1) + c3(�v3,�v1) = c1||�v1||2 + c2.0 + c3.0
(�u,�v2) = c2||�v2||2

(�u,�v3) = c3||�v3||2



Hence

c1 =
(�u,�v1)
||�v1||2

c2 =
(�u,�v2)
||�v2||2

c3 =
(�u,�v3)
||�v3||2

and

�u =
(�u,�v1)
||�v1||2

�v1 +
(�u,�v2)
||�v2||2

�v2 +
(�u,�v3)
||�v3||2

�v3 =
3�

n=1

(�u,�vn)
||�vn||2

�vn



Orthogonal series expansion

Suppose {φn(x)} is an infinite orthogonal set of functions on an interval [a, b]. If y =
f (x) is a function defined on the interval [a, b], we can determine a set of coefficients
cn, n = 0, 1, 2, ... for which

f (x) = c0φ0(x) + c1φ1(x) + c2φ2(x) + ... + cnφn(x) + ... (1)

using the inner product. Multiplying the expression above by φm(x) and integrating
over the interval [a, b] gives
� b
a f (x) φm(x) dx =

= c0

� b

a
φ0(x) φm(x) dx + c1

� b

a
φ1(x) φm(x) dx + ... + cn

� b

a
φn(x) φm(x) dx + ...

= c0(φ0, φm) + c1(φ1, φm) + ... + cn(φn, φm) + ...



By orthogonality, each term on r.h.s. is zero except when m = n, in which case we
have

� b

a
f (x) φn(x) dx = cn

� b
a φ

2
n(x) dx

The required coefficients are then

cn =

� b
a f (x) φn(x) dx
� b
a φ

2
n(x) dx

, n = 0, 1, 2...

In other words

f (x) =
∞�

n=0
cn φn(x) =

∞�

n=0

� b
a f (x) φn(x) dx

||φn(x)||2
φn(x) =

∞�

n=0

( f , φn)
||φn(x)||2

φn(x)



Definition: Orthogonal set / weight function

A set of real-valued functions {φ0(x), φ1(x), φ2(x), ...} is said to be orthogonal with

respect to a weight function w(x) on an interval [a, b] if
� b

a
w(x) φm(x) φn(x) dx = 0, m � n

The usual assumption is that w(x) > 0 on the interval of orthogonality [a, b].

For example, the set {1, cos x, cos 2x, ...} is orthogonal w.r.t. the weight function
w(x) = 1 on the interval [−π, π].



If {φn(x)} is orthogonal w.r.t. a weight function w(x) on the interval [a, b], them multi-
plying the expansion (1), f (x) = c0φ0(x) + c1φ1(x)..., by w(x) and integrating by parts
yields

cn =

� b
a f (x) w(x) φn(x) dx

||φn(x)||2

where

||φn(x)||2 =
� b

a
w(x) φ2

n(x) dx



The series

f (x) =
∞�

n=0
cn φn(x) (2)

with the coefficients given either by

cn =

� b
a f (x) φn(x) dx

||φn(x)||2
or cn =

� b
a f (x) w(x) φn(x) dx

||φn(x)||2
(3)

is said to be an orthogonal series expansion of f or a generalized Fourier series.

Complete sets

We shall assume that an orthogonal set {φn(x)} is complete. Under this assumption
f can not be orthogonal to each φn of the orthogonal set.



Fourier series

Trigonometric series

The set of functions
�

1, cos
π

p
x, cos

2π
p

x, cos
3π
p

x, ..., sin
π

p
x, sin

2π
p

x, sin
3π
p

x, ...
�

is orthogonal on the interval [−p, p].

We can expand a function f defined on [−p, p] into the trigonometric series

f (x) =
a0
2
+

∞�

n=1

�
an cos

nπ
p

x + bn sin
nπ
p

x
�

(4)



Determining the ocefficients a0, a1, a2, ..., b1, b2, .... :
We multiply by 1 (the first function in our orthogonal set) and integrate both sides of
the expansion (4) from −p to p
� p

−p
f (x) dx =

a0
2

� p

−p
dx +

∞�

n=1

�
an

� p

−p
cos

nπ
p

x dx + bn

� p

−p
sin

nπ
p

x dx
�

Since cos(nπx/p) and sin(nπx/p), n ≥ 1, are orthogonal to 1 on the interval, the r.h.s.
reduces as follows

� p

−p
f (x) dx =

a0
2

� p

−p
dx =

�a0
2

x
�p
−p
= pa0

Solving for a0 yields

a0 =
1
p

� p

−p
f (x) dx (5)



Now, we multiply (4) by cos(mπx/p) and integrate
� p

−p
f (x) cos

mπ
p

x dx =
a0
2

� p

−p
cos

mπ
p

x dx

+

∞�

n=1

�
an

� p

−p
cos

mπ
p

x cos
nπ
p

x dx + bn

� p

−p
cos

mπ
p

x sin
nπ
p

x dx
�

By orthogonality, we have
� p

−p
cos

mπ
p

x dx = 0, m > 0
� p

−p
cos

mπ
p

x sin
nπ
p

x dx = 0
� p

−p
cos

mπ
p

x cos
nπ
p

x dx = p δmn

where the Kronecker delta δmn = 0 if m � n, and δmn = 1 if m = n.



Thus the equation (6) above reduces to
� p

−p
f (x) cos

nπ
p

x dx = anp

and so

an =
1
p

� p

−p
f (x) cos

nπ
p

x dx (6)



Finally, multiplying (4) by sin(mπx/p), integrating and using the orthogonality relations
� p

−p
sin

mπ
p

x dx = 0, m > 0
� p

−p
sin

mπ
p

x cos
nπ
p

x dx = 0
� p

−p
sin

mπ
p

x sin
nπ
p

x dx = p δmn

we find that

bn =
1
p

� p

−p
f (x) sin

nπ
p

x dx (7)

The trigonometric series (4) with coefficients a0, an, and bn defined by (5), (6) and
(7), respectively are said to be the Fourier series of the function f . The coefficients
obtained from (5), (6) and (7) are referred as Fourier coefficients of f .



Definition: Fourier series

The Fourier series of a function f defined on the interval (−p, p) is given by

f (x) =
a0
2
+

∞�

n=1

�
an cos

nπ
p

x + bn sin
nπ
p

x
�

(8)

where

a0 =
1
p

� p

−p
f (x) dx (9)

an =
1
p

� p

−p
f (x) cos

nπ
p

x dx (10)

bn =
1
p

� p

−p
f (x) sin

nπ
p

x dx (11)



Example 1: Expansion in a Fourier series

f (x) =
�

0, −π < x < 0
π − x, 0 ≤ x < π

With p = π we have from (9) and (10) that

a0 =
1
π

� π

−π
f (x) dx =

1
π



� 0

−π
0 dx +

� π

0
(π − x) dx


 =

1
π


 πx − x2

2



π

0
=
π

2

an =
1
π

� π

−π
f (x) cos nx dx =

1
π



� 0

−π
0 dx +

� π

0
(π − x) cos nx dx




=
1
π

��
(π − x)

sin nx
n

�π

0
+

1
n

� π

0
sin nx dx

�

= − 1
nπ

�cos nx
n

�π
0

=
− cos nπ + 1

n2π
=

1 − (−1)n

n2π



Similarly, we find from (11)

bn =
1
n

� π

0
(π − x) sin nx dx =

1
n

The function f (x) is thus expanded as

f (x) =
π

4
+

∞�

n=1

�
1 − (−1)n

n2π
cos nx +

1
n

sin nx
�

(12)

We also note that

1 − (−1)n =

�
0, n even
2, n odd.



Convergence of a Fourier series

Theorem: Conditions for convergence

Let f and f � be piecewise continuous on the interval (−p, p); that is, let f and f �

be continuous except at a finite number of points in the interval and have only finite
discontinuities at these points. Then the Fourier series of f on the interval converges
to f (x) at a point of continuity. At a point of discontinuity, the Fourier series converges
to the average

f (x+) + f (x−)
2

,

where f (x+) and f (x−) denote the limit of f at x from the right and from the left,
respectively.



Example 2: Convergence of a point of discontinuity

The expansion (12) of the function (Example 1)

f (x) =
�

0, −π < x < 0
π − x, 0 ≤ x < π

will converge to f (x) for every x from the interval (−π, π) except at x = 0 where it will
converge to

f (0+) + f (0−)
2

=
π + 0

2
=
π

2
.



Periodic extension
Observe that each of the functions in the basis set

�
1, cos

π

p
x, cos

2π
p

x, cos
3π
p

x, ..., sin
π

p
x, sin

2π
p

x, sin
3π
p

x, ...
�

has a different fundamental period 2p/n, n ≥ 1, but since a positive integer multiple

of a period is also a period, we see that all the functions have in common the period

2p. Thus the r.h.s. of

f (x) =
a0
2
+

∞�

n=1

�
an cos

nπ
p

x + bn sin
nπ
p

x
�

is 2p-periodic; indeed 2p is the fundamental period of the sum.

We conclude that a Fourier series not only represents the function on the interval

(−p, p) but also gives the periodic extension of f outside this interval.



We can now apply the Theorem on conditions for convergence to the periodic exten-
sion or simply assume the function is periodic, f (x + T ) = f (x), with period T = 2p
from the outset. When f is piecewise continuous and the right- and left-hand deriva-
tives exist at x = −p and x = p, respectively, then the Fourier series converges to the
average [ f (p−)+ f (p+)]/2 at these points and also to this value extended periodically
to ±3p,±5p,±7p, and so on.

Example: The Fourier series of the function f (x) in the Example 1 converges to the
periodic extension of the function on the entire x-axis. At 0,±2π,±4π, ..., and at
±π,±3π,±5π, ... , the series converges to the values

f (0+) + f (0−)
2

=
π

2
and

f (π+) + f (π−)
2

= 0



Sequence of partial sums

It is interesting to see how the sequence of partial sums {S N(x)} of a Fourier series
approximates a function. For example

S 1(x) =
π

4
, S 2(x) =

π

4
+

2
π

cos x + sin x, S 3(x) =
π

4
+

2
π

cos x + sin x +
1
2

sin 2x


