ORTHOGONAL FUNCTIONS AND FOURIER SERIES

Orthogonal functions

A function can be considered to be a generalization of a vector. Thus the vector
concepts like the inner product and orthogonality of vectors can be extended to func-
tions.

Inner product

Consider the vectors i = uji + urj + usk and # = v{i + voj + v3k in R3, then the inner
1 2] T u3 1L+va)+v3
product or dot product of iz and vV is a real number, a scalar, defined as
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The inner product

(id, V) = u1vy + upvy + upvy =

possesses the following properties

(i
(i
(i

(iv

(#,V) = (V, i)
(kii, V) = k(ii, V)
(id,il) =0 if

(@ +v,w) = (i,

)
)
)
)

9—

u
W) +

NI

UVk

and (i,i0) >0

Vv, W)



Suppose that f; and f> are piecewise continuous functions defined on an interval
[a, b]. Since the definite integral on the interval of the product fi(x)f>(x) possesses
properties (i) - (iv) above.

Definition: Inner product of functions

The inner product of two functions f; and f, on an interval [a, b] is the number

b
i o) = f 1) folx) dx



Definition: Orthogonal functions

Two functions f; and f> are said to be orthogonal on an interval [a, b] if

b
(fi. o) = f A f(x) dx = 0

Example: f1(x) = x* and f>(x) = x> are orthogonal on the interval [-1, 1] since
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Orthogonal sets
We are primarily interested in an infinite sets of orthogonal functions.
Definition: Orthogonal set

A set of real-valued functions {¢g(x), ¢1(x), #>(x), ...} is said to be orthogonal on an
interval [a, b] if

b
(Dm, Pn) = f dm(x) Pn(x) dx =0, m¥*n



Orthonormal sets

The norm ||i]| of a vector i can be expressed using the inner product:

@a) = la* = lal= @i
Similarly the square norm of a function ¢, is ||¢n||2 = (¢n, dn), and so the norm is

ldnll = +/(én, dn). In other words, the square norm and the norm of a function ¢, in
an orthogonal set {¢,(x)} are, respectively,

b b
pull* = f ¢2(x)dx and ||¢n||:\/ f ¢2(x) dx




Example 1: Orthogonal set of functions
Show that the set {1, cos x, cos 2x, ...} is orthogonal on the interval [, ]:
oo =1, ¢, = cosnx

(00, Pn) = f_(/)o(x) On(X) dxzf cos nx dx

| G W .
= |—sinnx| = —[sinnmx—sin(—nmr)] =20
n o N

and for m # n, using the triangle identity

(Dm, Pn) = fﬂ Om(x) dn(x) dx = fﬂ COS mx cos nx dx

v/

= % f [cos(m + n)x + cos(m — n)x] dx

2

1 sin(m+n)x+sin(m—n)xﬂ 0
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Example 2: Norms
Find the norms of the functions given in the Example 1 above.

JT
1ol = f dx = 2n
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lgoll = V2r
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||¢n||2 = fcosznxdxz—f [1+cos2nx]dx=nm
o 2 J_r

Ipnll = m

Any orthogonal set of nonzero functions {¢,(x)}, n = 0, 1,2... can be normalized, i.e.
made into an orthonormal set.
Example: An orthonormal set on the interval [, ]:

{ 1 cosx cos2x }



Vector analogy

Suppose V1, v», and V3 are three mutually orthogonal nonzero vectors in R3. Such an
orthogonal set can be used as a basis for R?, that is, any three-dimensional vector
can be written as a linear combination

U= C1171 + C2\72 + C3173

where ¢;, i = 1,2, 3 are scalars called the components of the vector. Each component
can be expressed in terms of il and the corresponding vector V;:

@, 7)) = (71,7 + o, P + 333,91 = 1l 17 + 2.0 + ¢3.0
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Orthogonal series expansion

Suppose {¢,(x)} is an infinite orthogonal set of functions on an interval [a,b]. If y =
f(x) is a function defined on the interval [a, b], we can determine a set of coefficients
cn,n=0,1,2,... for which

f(x) = copp(x) + c1¢1(x) + c2p2(X) + ... + Cppp(x) + ... (1)

using the inner product. Multiplying the expression above by ¢,,(x) and integrating
over the interval [a, b] gives

17 G pmlx) dx =

b b b
= Cof $0(x) dm(x) dx + ¢y f ¢1(x) dm(x) dx + ... + Cnf Gn(X) Pm(x) dx + ...
= ¢co(d0, dm) + c1(P1, dm) + ... + cn(Pn, dm) + ...



By orthogonality, each term on r.h.s. is zero except when m = n, in which case we
have

b
f‘ﬂmwwM=%ﬁ%mm

The required coefficients are then

Y @) () dx

; n= 0,1, 2.
[ da(x) dx
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In other words
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Definition: Orthogonal set / weight function

A set of real-valued functions {¢g(x), ¢1(x), #2(x), ...} is said to be orthogonal with
respect to a weight function w(x) on an interval [a, b] if

b
f w(x) dm(x) dp(x) dx =0, m+n

The usual assumption is that w(x) > 0 on the interval of orthogonality [a, b].

For example, the set {1, cos x, cos 2x, ...} is orthogonal w.r.t. the weight function
w(x) = 1 on the interval [—x, 7].



If {¢,,(x)} is orthogonal w.r.t. a weight function w(x) on the interval [a, b], them multi-
plying the expansion (1), f(x) = codo(x) + c1d1(x)..., by w(x) and integrating by parts
yields

_ fab J(x) w(x) én(x) dx
[ n(x)II?

Cn

where

b
(NI = f w(x) ¢a(x) dx



The series

(0]

F) =" cn pnlx) (2)

n=0

with the coefficients given either by

JS@e@dx [ ) w) dnt) d
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is said to be an orthogonal series expansion of f or a generalized Fourier series.
Complete sets

We shall assume that an orthogonal set {¢,(x)} is complete. Under this assumption
f can not be orthogonal to each ¢,, of the orthogonal set.



Fourier series
Trigonometric series

The set of functions
{ 4 2 3 s 21 _3r }

1, cos—x, cos—x, CcOS—X,..., SIn—x, SIn—Xx, SIN—UX,...
P p p p p p

is orthogonal on the interval [—p, p].

We can expand a function f defined on [-p, p] into the trigonometric series

f(x) = % + Z (an cos %x + b;,; sin %x)

n=1



Determining the ocefficients ag, ay, ay,..., by, by, .... :
We multiply by 1 (the first function in our orthogonal set) and integrate both sides of
the expansion (4) from —p to p

P
f f(x) dx——f dx+Z(anf cos@xdx+bnf singxdx)
p p

Since cos(nzx/p) and sin(nzx/p), n > 1, are orthogonal to 1 on the interval, the r.h.s.
reduces as follows

P P P
f f(x)dx = a_20f dx = [%x] = pay
P P 4

Solving for ag yields
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Now, we multiply (4) by cos(rmrx/ p) and integrate

P
f f(x) cos @x dx = 20 COS @x dx
— P 2 —p p

mr nmu P mr ni
+ Z (an f coS —x cos —x dx + by, f COS —X Sin —Xx dx)
- 14 —p p 14
By orthogonality, we have
14
f cosmxdx—o m >0
—p p
P T 714
f COS m—x sin n—x dx =0
—p p p

fp mm nrw
COS —X COS —X dX = p Omn
—p p p

where the Kronecker delta 6,,,;;;, = 0 if m # n, and 6,,;, = 1 if m = n.



Thus the equation (6) above reduces to

f f(x) cos —x dx = aup

and so

1 P
= —f f(x) cos ™y dx
P J-p p



Finally, multiplying (4) by sin(mmx/p), integrating and using the orthogonality relations

we find that

14
f sin@xdx:O, m >0

“p p
P mr ni
sin—x cos—xdx =0
—p p pP

P mm . nm
f SIn —Xx SIn —X dXx = p Omn
—p p P

by = - f " by sinx dix (7)
PJ-p

T
P

The trigonometric series (4) with coefficients aq, a,, and b,, defined by (5), (6) and
(7), respectively are said to be the Fourier series of the function f. The coefficients
obtained from (5), (6) and (7) are referred as Fourier coefficients of f.



Definition: Fourier series
The Fourier series of a function f defined on the interval (—p, p) is given by

ao - nm . nm
f(x)=—+ (a cos —Xx + b, sin —x
2 Z " n D

n=1

where

1 (P
apg = —f f(x) dx
PJ-p

1 P
a, = —f f(x) cosﬂxdx
P J-p p

1 P
b, = —f f(x) sinﬂxdx
P J-p p



Example 1: Expansion in a Fourier series

0, —-1<x<0

n—x, O0<x<nm

o~
With p = 7 we have from (9) and (10) that

1 T 1 0 T 1 X2
apg = —f f(x)dx:—[f 0dx+f(7r—x)dx]:—l7rx——
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Similarly, we find from (11)

1 (7 , 1
by, = — (m—x)sinnx dx = —
nJo

The function f(x) is thus expanded as
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We also note that
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Convergence of a Fourier series
Theorem: Conditions for convergence

Let / and f’ be piecewise continuous on the interval (—p, p); that is, let f and f’
be continuous except at a finite number of points in the interval and have only finite
discontinuities at these points. Then the Fourier series of f on the interval converges
to f(x) at a point of continuity. At a point of discontinuity, the Fourier series converges
to the average

Sx+) + f(x-)
5 :

where f(x+) and f(x—) denote the limit of f at x from the right and from the left,
respectively.



Example 2: Convergence of a point of discontinuity

The expansion (12) of the function (Example 1)

0, —T<x<0
n—x, O0<x<nm

f(X)={

will converge to f(x) for every x from the interval (—n, m) except at x = 0 where it will
converge to

fO+)+f0-) n+0 7
2 2



Periodic extension
Observe that each of the functions in the basis set

T 2 3 T 21 . 3r
1, cos—x, cos—x, COS—X,..., SIn—x, SIn—ux, SINn —xX,

p p p p p P
has a different fundamental period 2p/n, n > 1, but since a positive integer multiple
of a period is also a period, we see that all the functions have in common the period
2p. Thus the r.h.s. of

nm
= E " —x+b, sin—
f(x) = (a COS x + by sin ) x)

is 2p-periodic; indeed 2p is the fundamental period of the sum.

We conclude that a Fourier series not only represents the function on the interval
(—p, p) but also gives the periodic extension of f outside this interval.



We can now apply the Theorem on conditions for convergence to the periodic exten-
sion or simply assume the function is periodic, f(x + T) = f(x), with period T = 2p
from the outset. When f is piecewise continuous and the right- and left-hand deriva-
tives exist at x = —p and x = p, respectively, then the Fourier series converges to the
average [ f(p—)+ f(p+)]/2 at these points and also to this value extended periodically
to +3p, +5p, +7p, and so on.

Example: The Fourier series of the function f(x) in the Example 1 converges to the
periodic extension of the function on the entire x-axis. At 0,+2r, +4nx, ..., and at

+m, +3m, +57, ...

, the series converges to the values

fO+)+ f(0-) and fl+) + f(m—)

JT
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Sequence of partial sums

\\ \\ a \\ \\
o o [ ] o e N\
N\ \ N\ \
1 \l____l Ny PR | \L___ L N
1 | Wi I 1 ] i I L ] 1
-4 -3m 2m -=&m b8 2 3w  4rx

It is interesting to see how the sequence of partial sums {S y(x)} of a Fourier series

approximates a function. For example
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So(x) = 1 + ;cosx+smx,

—
T

T T T T e
3k

2F

. /

0 ey

F 32 a0 12

...............................

(c) §;5(x) on (-7, )
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(b) Sg(x) on (-7, m)
y

Cl0 50 5 10
(d) S;5(x) on (~47, 47)

n . :
S3(x) = 1 +;cosx+smx+§sm2x



