Translation theorems

Translation on the s-axis

Theorem: First translation theorem

If L{f(t)} = F(s) and a is any real number, then

L{" (O} = F(s - a) M

Proof:

L{e“fw) = f e oyt = f e i = FGs - a)
0 0

It is sometimes useful to use the notation L{e“’f(t)} = L{f(O}s—5-g

F

F(s) F(s —a)

:

s=a,a>0



Example 1:

(a)
B 6
s—s—5 - (s — 5)4

L{e'P) = £{r) EL

s—s—=5 S4

s s+ 2

s2+ 16

L {e_zt coSs 4t} = L{cosdtly 5 (—2) =

sost2 (s+2)2+16



Inverse form of the theorem

To compute the inverse of F(s — a), we must recognize F(s), take its inverse to find
f(1), and then multiply by e%':

LYHF(Gs —a)) = L7HFG) o g—a) = 1 (1)

where 1(t) = L~ {F(s)).



Example 2:




(b) L_l{ s/2 +5/3 }

52 +4s + 6




Example 3: an IVP

Y/ =6y +9y = 2, y(0)=2, y'(0)=17







Example 4:

yi+4y +6y=1+¢"

4

b

y(0)=0, y'(©0)=0




Translation on the r-axis
Definition: Unit step function / Heaviside function

The unit step function U (r — a) is defined to be 6?/
0, 0<t<a e
1, t > a.

(Ll(t—a):{

Remarks: a

(i) We define the function U (¢t — a) only on the non-negative t-axis since we are
concerned with the Laplace transform.



(i) When a function f(¢) is multiplied by U (t — a), the unit step function turns off a
portion of the graph of that function.

Example: f(r) = 2t — 3 multiplied by U (¢t — 1) has the portion of f(#) on the interval
0 <t < 1 turned off (zero); the function is on for ¢ > 1.

(iii) The unit step function can be used to write piecewise-defined functions in a com-
pact form.

Example: Considering 0 <t < 2,2 <t < 3,t > 3 and the corresponding values of
U (t-2) and U (t — 3), the piecewise-defined function in the figure can be written

f@=2-3UE-2)+U(t-3) £
P e —
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A general piecewise-defined function

| g, O0<Lt<a
f(t)_{h(t), i>a.

Is the same as

f@)=g®)—g®)U @t —-a)+hO)U(t—a)

Similarly
0, 0<t<a
() =1 g, a<t<b
0, t>b.

is the same as

fO=g®)[U{Et-a)— U -Db)]



Example 5:

20e, 0<tr<5
ro={ o U5

a=>35,g(@) =20t h(r) =0:

f(@®) =20t =20t U((t-5)

f(0)
100 +

e




Consider a general function y = f(¢r). For a > 0, the graph of the piecewise-defined
function

0 0<Lt<a

fo-aue-a={§_, 5

coincides with the graph y = f(¢ — a) for t > a (which is the entire graph of f(¢), t > 0
shifted a units to the right) but is identically zero for 0 < ¢t < a.

() £

(@) f(0). 120 (b) f(t—a) W(t-a)

| _“-P




Theorem: Second translation theorem

If F(s) = L{f(®)} and a > 0, then

L{f(t—a) Ut -a)} =e “F(s) (3)

Proof:

L{ft—a)U(t—-a)) = fae—“f(t—a)ﬂ(z—a) dt+fooe—5’f(t—a)fu<t—a) dt
0 a
= f e STf(t —a) dt

Using the substitution v = t — a and dv = dt in the last integral, we get

LUft-a) Ut -a) = fo eSO+ () dly = ¢4 fo eV ) dv = e L (1)



The Laplace transform of a unit step function, i.e. f(t —a) =1

—as

LIUG—a) = es (4)

Example: f(1) =2 -3U @ —-2)+ U (t - 3)

1 e—2S —3s
2£{1}—3L{ﬂ(t—2)}+.£{(u(t—3)}:2§ -3 +

S S

Inverse form of the second translation theorem:

If £(t) = L~V {F(s)}, the inverse of the theorem, with a > 0, is

L™ F(s)} = f(t - &)U (1 - a) (5)



Example 6:
(a) L7 {L5¢72%}: with the identification a = 2, F(s) = 1/(s —4), L™V (F(s)} = ¢¥, we
have

- {S% e—zs} _ AD g -0

(b) £~ {+e—“/2}: with a = 71/2, F(s) = s/(s* +9), L™ {F(s)} = cos 3¢, we get

s=+9

! {ﬁe_”/z} =cos3(t—n/2) U(t—7r/2)

Verify that using the addition formula for the cosine the result is the same as
—sin3t U (t — t/2).



Alternative form of the second translation theorem
How do we find the Laplace transform of g(t)U (t — a) ?
Using the substitution u = ¢ — a and the definition of U (¢t — a)
L{igH U@ -a) = foo e Sg(t) dt = ‘fooo e_s(”+a)g(u +a)du
a
LigU(-a)) = e L{gt + a)) (6)

Example:

LIPUE-) =@ L{t+ 2 = > L{F +dr+4) =7 (_ L



Example 7: L{cost U (t — x)}
Here g(t) = cost, a = m, and then g(¢+ ) = cos(t+ 1) = — cos ¢ by the addition formula
for the cosine. Thus

Licost Ut —nm)) =—-e ™ L{cost} = - 25 oS
s+ 1



Example 8: an IVP

0, O<t<nm

Y +y=f®, y0)=5, where f(t):{3cost > .




y(1) = {

5¢7L,
S5¢ T+ %e_(t_”) + %sint +

3
ZCOS l,

O<Lt<m
I > .

2

kY4




Additional operational properties

How to find the Laplace transform of a function f(¢) that is multiplied by a monomial
1"*, the transform of a special type of integral, and the transform of a periodic function?

Multiplying a function by "

—F(s) = — f ~f() di = f ; [ @] dr = - fo et f(0) dr = ~L{1 f1))
that is
d
L{rf(} = _EF(S)
Similarly

LI f0) = Ll fw) = —-Lie fo) =~ (L (r)})—d—zzz{ )
FO) = Litt f0) =~ L1t f0) =~ [~ LU@)) = L1



Theorem: Derivatives of transforms

If F(s) = L{f(H}andn=1,2,3,...then

dl’l
L{" fO} = (-D" gt )

Example 1: L{¢ sinkt}

With f(#) = sinkt, F(s) = k/(s* + kz), and n = 1, the theorem above gives

d d k 2ks
t sinkt} = ——/L{sinkt} = —— =— >
L{t sinkt} dsL {sin kt} e (s2 + k2) Y

Evaluate £ {t2 sin kt} and L {t3 sin kt}.



Example 2: x” +16x =cos4t, x(0)=0, x'(0)=1

The Laplace transform of the DE gives

2
s“+160)X(s) =1+
( JXE) 52+ 16

S
+
s2+16 (52 +16)2

X(s) =

In the example 1 we have got

2ks
~1 .
L {—(s2 - k2)2} =t sinkt

and so with the identification k£ = 4, we obtain

e PR B QMR Oy S S G
=g L {52+16}+8L {(s2+16)2}_4

1
sin4t + 3 t sin4t



