HIGHER ORDER DIFFERENTIAL EQUATIONS

Theory of linear equations

Initial-value and boundary-value problem

nth-order initial value problem is

dn : dn-1 dv
Solve: a,,(\) : -+ ap- l(x) Yt .. +a I(x)—} + ap(x)y = g(x)
ln | dx
Subject to: W(x0) =y, V(x0) = y1s - ... YV =y, (1)

we seek a function defined on an interval I, containing x, that satisfies the DE and
the n initial conditions above.



Higher-order ODEs: overview

General aspects

Reduction of order

e Homogeneous linear equation with constant coefficients
o Method of undetermined coefficients
e Method of variation of parameters

Linear models

e Examples



Existence and uniqueness
Theorem: Existence of a unique solution

Let a,(x), a,,_1(x), ... , aj(x), ap(x) and g(x) be continuous on an interval I and let
an(x) # 0 for every x in this interval. If x = xy in any point in this interval, then a
solution y(x) of the initial value problem (1) exists on the interval and is unique.

Example: Unique solution of an IVP
W5 =y +T7y=0, y1)=0,y'(1)=0,y"(1)=0

has the trivial solution y = 0. Since the DE is linear with constant coefficients, all
the conditions of the theorem are fulfilled, and thus y = 0 is the only solution on any
interval containing x = 1.



Boundary-value problem

consists of solving a linear DE of order two or greater in which the dependent variable
y or its derivatives are specified at different points. Example: a two-point BVP

2
“ d }
Solve: ag(.x)—i + ay(x)=— + ap(x)y = g(x)
dx= dx
Subject to boundary conditions: y(xp) = vo, ¥(b) = y; (2)

solutions of the DE

——




A BVP can have many, one or no solutions:

The DE x”" +16x = 0 has the two-parameter family of solutions x = ¢| cos 41 +c¢» sin 41.
Consider the BVPs:

(1) x(0) = 0, and x(r/2) = 0 = ¢ = 0 and the solution satisfies the DE for any value
of ¢;, thus the solution of this BVP is the one-parameter family x = ¢ sin4t.

(2) x(0) =0, and x(7/8) = 0 = ¢ = 0 and ¢; = 0, so the only solution to this BVP is
x = 0.

(3) x(0) = 0 = ¢; = 0 again but the second condition x(r/2) = 1 leads to the
contradiction: 1 = ¢ sin 21 = ¢7.0 = 0.



Homogeneous equations
nth-order homogeneous differential equation

n dn- 1 ,

+ + ... +dlx + dplXx)y 3

dn( ’f) dri— l

nth-order nonhomogeneous differential equation (g(x) # 0)

d"\' n—1_

an( \) >+ an—l(\)
X‘

dy
Tt a5 +agly = g() @)
dx dx

Examples:
(1) Homogeneous DE: 2y” + 3y’ = 5y =0
(2) Nonhomogeneous DE: x2y"” + 6y + 10y = .

To solve a nonhomogeneous DE, we must first be able to solve the associated
homogeneous equation.



We will soon proceed to the general theory of nth-order linear equations which we will
present through a number of definitions and theorems. To avoid needless repetition,
we make (and remeber) the following assumptions:

on some common interval /

e the coefficients q;(x), i = 0, 1,2, ...,n are continuous;

¢ the function g(x) onr. h. s. is continuous; and

e ay(x) # 0 for every x in the interval.



Differential operators

Examples:

dy d d2y d [dy 5 . ny

— =—y=Dy or — = | =D(Dy)= D"y andingeneral — = D"y
dx _ dx ‘ dx? dx(dx) (Dy) : ’ dx” '

nth-order differential operator:
polynomial expressions involving D are also differential operators

L=aAﬂD"+mkﬂﬂDm4+...+amﬂD+adﬂ

An nth-order differential operator is a linear operator, that is, it satisfies

Llaf(x) +Bg(x)] = aL(f(x)) + BL(g(x)) (5)



Differential equations
Any linear differential equation can be expressed in terms of the D notation.

Example

vi+5y +6y = 5x-3
Dz)-' +5Dy+6y = 5x-3
(D* +5D +6)y = 5x-3

The nth-order linear differential equations can be written compactly as

Homogeneous: Liy) = 0
Non-homogeneous: L(y) = g(x)



Superposition principle
Theorem: Superposition principle - homogeneous equations

Let vq, v2, ... , yi be solutions of the homogeneous nth-order DE (3) on an interval |,
then the linear combination
k
V= (‘l_)»'l(X) + (32_\’2()() + ...+ Ck)'k()(‘) = Z C,'__\'i()f),

i=1
where the ¢;, i = 1,2, ...,k are arbitrary constants, is also a trivial solution.

Proof: The case k = 2. Let y(x) and y»(x) be solutions of L(y) = 0, then also

L(y) = Le1y1(x) + c2y2(x)] = ¢1 L(y1) + c2L(y2) = 0



Corollaries

(a) A constant multiple v = ¢;v(x) of a solution y;(x) of a homogeneous linear DE is
also a solution.

(b) A homogeneous linear DE always possesses the trivial solution y = (0.

Example: Superposition - homogeneous DE
Let y; = x% and y» = x2 In x be both solutions of the homogeneous linear DE
Xy = 2xy’ + 4y = 0 on the interval I = (0, o).

Show that by superposition principle, the linear combination
y= cl.r2 + c2x2 In x

is also a solution of the equation on the interval.



Linear dependence and linear independence

Definition:
A set of functions fj(x), f>(x), ..., fu(x) is said to be linearly dependent on an interval
I if there exist constants ¢y, ¢, ..., i, not all zero, s.t.

c1f1(x) + cafalx) + ... + cpfu(x) =0 (6)

for every x in the interval. If the set of functions is not linearly dependent on the
interval, it is said to be linearly independent.

Example: If two functions are linearly dependent, then one is simply a constant mul-
tiple of the other: assuming ¢y # 0, ¢1f1(x) + c2fo(x) = 0 = fi(x) = —(c2/c1) fH(x).
For example fj(x) = sin(x) cos(x) and f>(x) = sin(2x) = 2 f1(x).

Two functions are linearly independent when neither is a constant multiple of the
other on an interval. For example fj(x) = x and f3(x) = |x] on I = (—o00, 00).

y y

h=x F,= I




Solutions of differential equations

We are primarily interested in linearly independent solutions of linear DEs.

How to decide whether n solutions yy, ys,....,yv, of a homogeneous linear nth-order
DE (3) are linearly independent?

Definition: Wronskian

Suppose each of the functions fj(x), f>(x), ..., fu(x) possesses at least n — 1 deriva-
tives. The determinant

N Lo
v’ -, -,
fl f,’Z fn
.(n.— 1) .(n.— 1) .(n'— 1)
1 ) e In

is called the Wronskian of the functions.



Theorem: Criterion for linearly independent solutions

Let v, v7....,vy be n solutions of the homogeneous linear nth-order DE (3) on an
interval I. Then the set of solutions is linearly independent on [/ if and only if
W(y1,¥2, ... yu) # 0 for every x in the interval.

Definition: Fundamental set of solutions

Any set yi, v, ....yn Of n linearly independent solutions of the homogeneous linear

nth-order DE (3) on an interval [ is said to be a fundamental set of solutions on
the interval.



Theorem: Existence of a fundamental set

There exists a fundamental set of solutions for the homogeneous linear nth-order DE
(3) on aninterval 1.

Theorem: General solution - homogeneous equations

Let vy, v2,.... vy be a fundamental set of solutions of the homogeneous linear nth-

order DE (3) on an interval I. Then the general solution of the equation on the
interval is

y =c1y(x) + caya(x) + ... + cpyn(x)

where ¢, i = 1,2, ...,n are arbitrary constants.
For proof for the case n = 2 see D.G. Zill et al., Advanced Engineering Mathematics,
4th Edition, p. 104.



mm) Example 1:

The functions y; = ¢** and y; = ¢~ are both solutions of the homogeneous linear
DE y" — 9y = 0 on (—co0, 00).

3x

Calculate the Wronskian and determine whether the functions form a fundamental
set of solutions. If yes, determine a general solution.

mm) Example 2:
The function y = 4sinh3x — 5¢°¥ is a solution of the DE in Example 1 above. Verify

this.

3x —3x

We must be able to obtain this solution from the general solution y = ¢je”* + cre

What values the constants ¢; and ¢» have to have to get the solution above.



mm) Example 3:

The functions y; = €%, y5 = ¢**, and y3 = ¢* satisfy the third order DE y"’ —
6y’ + 11y’ — 6y = 0. Determine whether these functions form the fundamental set of
solutions on (—co, c0), and write down the general solution.



d" dn-1 d
a3 g + 1D g + - @@ + a0y = 80

Nonhomogeneous equations

Any function y, free of any arbitrary parameters that satisfies (4) is said to be a
particular solution of the equation.

For example, y, = 3 is a particular solution of y** + 9y = 27.
Theorem: General solution - nonhomogeneous equations

Let y, be any particular solution of the nonhomogeneous linear nth-order DE (4) on
an interval /, and let v, v, ..., v, be a fundamental set of solutions of the associated
homogeneous DE (3) on 1. Then the general solution of the equation on 7 is

y= Cl.\"l(,r) -+ (‘2}'2(,‘() T rer T Cnyn(fx‘) + )'p (7)

where the ¢;,i = 1,2, ..., n are arbitrary constants.

(4)



Complementary function

The general solution of a homogeneous linear equation consists of the sum of two
functions

y =c1y1(x) + caya(x) + ... + cpynl(x) + yp(x) = Vel(x) + Vp(x)

The linear combination y = ¢jy(x)+cay2(x)+...+cpyn(x) which is the general solution
of the homogeneous DE (3), is called the complementary solution for equation (4).

Thus to solve the nonhomogeneous linear DE, we first solve the associated homoge-
neous equation and then find any particular solution of the nonhomogeneous equa-
tion. The general solution is then

y = complementary function + any particular solution.



Another superposition principle
Theorem: Superposition principle - nonhomogeneous equations

Let yp,.¥ps, .- Vp, D€ k particular solutions of the nonhomogeneous linear nth-order
DE (4) on an interval I corresponding, in turn, to k distinct functions gy, g-. ..., g¢. That
is, suppose yp,, denotes a particular solution of the corresponding DE

an(x)}'(") + an—l(-‘:)_\’(n_” + ... +a(x)y +apg(x)y = gi(x) (8)

wherei=1,2,....k. Then

Vp = Yp(X) + yp,(X) + oo + yp, (%) (9)
is a particular solution of

an(y"™ + an_ 1YV 4 L+ a0y + ap(0)y = g1(x) + g2(0) + ... + gi(x) (10)



For proof for the case k = 2 see D.G. Zill et al., Advanced Engineering Mathematics,
4th Edition, p. 104.

Example:
Verify that
2 " . . .
yp, = —4x° s aparticular solution of y" -3y’ +4y = -16x" + 24x - 8
7y . . . Ty
Yp, = €~ is a particular solution of  y"" — 3y’ + 4y = 2¢°*
Yp; = xe*  isaparticular solution of y” -3y +4y=2xe" - ¢*

and thaty = yp,, + yp, + Vp; = —4x2 + €2¥ + xe* is a solution of

v’ =3y +4y = —16x + 24x — 8 + 2% 4+ 2xe* — €°



Remarks:

A dynamical system whose mathematical model is a linear nth-order DE

an(OY™ + a1 (Y + L+ a0y + agn)y = g()

is said to be a linear system. The set of n time dependent functions y(1),y'(1),

., v~ D(s) are the state variables of the system. Their values at some time 1
give the state of the system. The function g is called the input function, forcing
function, or excitation function. A solution y(r) of the DE is said to be the output
or response of the system. The output or response y(r) is uniquely determined by
the input and the state of the system prescribed at a time 1; that is, by the initial
conditions y(tg), y'(1g), ..., ¥~ V(1g).



Reduction of order

Suppose y(x) denotes a known solution of a homogeneous linear second-order equa-
tion
ar(x)y" + ay(x)y" + ap(x)y = 0 (11)

we seek the second solution y>(x) so that y; and y; are linearly independent on some
interval 1. That is we are looking for y» s. t. y2/y| = u(x), or y2(x) = u(x)y(x).

The idea is to find u(x) by substituting y>(x) = u(x)y;(x) into the DE. This method is
called reduction of order since we must solve a first-order equation to find u.



mm) Example:

Given y; = " is a solution of y"” — y = 0 on (—o0, o), use the reductions of order to
find a second solution y».



General case

We put the equation (11) into the standard form by dividing by a>(x):

Vv 4+ P(x)y + Q(x)y =0 (12)
where P(x) and Q(x) are continuous on some interval /. Assume that y;(x) is a known
solution of (12) on I and that y(x) # 0 for every x € I. We define y = u(x)y(x)

y = uy'l +yu’, y'= uy'l' + 2_\"1 u' + yu”

),I’ + P_V’ + Q.\' = U I:_V’l’ + P_",l + Q,"l] + }"lu,’ + (2}*'1 + P_vl)l" = O

where the term in the square bracket equals to zero.



This implies

yiu'" + (2_\"1 + P_vl)u' =0 or yw'+ (2_\"1 + Py l) w=0

where we used w = u’. The last equation can be solved by separating variables and
integrating

dw Y
42 ldx+ Pdx =0
Wy
N
In |n-’__\-'f| = - f Pdx + ¢
or
2 ~ [ Pdx

wy| = cre



Solving the last equation for w, and using w = u” and integrating again gives

By choosing ¢; = 1 and ¢; = 0 and by using v = u(x)y;(x) we find the second solution
of the equation (12):

— dex
vy = y1(x) f Ix (13)

yi( Y)“



Example:
y1 = x* is a solution of x*y"” — 3xy’ + 4y = 0. Find the general solution on (0, ).
From the standard form of the equation
3 4
_V” _ _yl N _2}, -0
X X

we find using the formula above

P 63 f dx/x 2 dx ,
Vo = X ———dx = x — =x"Inx
x4 X

The general solution on (0, co) is given by

2 2
y=c1y] + 2 =c1x" +cx”Inx



Homogeneous linear equations with constant coefficients

All solutions of the homogeneous linear higher-order DE

any™ + ap_ YV + v apy +agy=0

where the coefficients a;,i = 0, 1...,n are real constants and a,, # 0 are either expo-
nential functions or are constructed out of exponential functions.

Recall: the solution of the linear first-order DE y’ + ay = 0, where a is a constant, has
an exponential solution y = cje™“* on (—oo, c0).



Auxiliary equation

We focus on the second-order equation

ay’ + by +cy=0 (14)

If we try a solution y = ¢™*, the equation above becomes

mx

4) . N - ?
am“e"™ + bme™ +ce™ =0 or "(am“+bm+c)=0

Since ¢"* is never zero for real values of x, the exponential function can satisfy the
DE (14) only if m is a root of the quadratic equation

2
am~+bm+c =10

which is called the auxiliary equation.



Since the roots of the auxiliary equation are

R —b + Vb? - dac
b= 2a
~b — Vb2 - dac
m2 = 2a

there will be three forms of general solution of (14):
e mj and m are real and distinct (b* — 4ac > 0),
e m and m are real and equal (b* — 4ac = 0), and

. 2
e mj and my are conjugate complex numbers (b~ — 4ac < 0)



Distinct real roots

We have two solutions y; = ¢"1* and y, = ¢"2* which are linearly independent on
(=00, c0) and thus form a fundamental set of solutions.

The general solution is on this interval

mpx mox

y=ce + o€ -



Repeated roots

When m; = mp we get only one exponential solution y; = ¢"'!* where m; = —b/2a
(b2 — 4ac = 0 in the expression for the roots of the quadratic equation).

The second solution can be found by reduction of order:

nmyx 82"' 1 X Hnx
V) =¢€ I o 1_d)( =¢e I’ dx = xe"'l
e.{.- l-

where we used —P(x) = —b/a = 2m,. ay”’ +by' +cy=0

The generals solution is

mx mpx
y=c1e" " + coxe!



Conjugate complex roots
We can write m; = a + i8 and m> = a — i where @ and 8 > 0 are real and i* = 1.
Formally this case is similar to the case I:

y — Cle(fr""lg)\ + Cze(fr—lﬁ)\

Since this is a solution for any choice of the constants C and C», the choices C| =
C,=1and Cy; =1 and C, = —1 give two solutions

y| = e(_afﬂﬁ)x + e(tr—:ﬁ)x — efr..\' ( ezﬁx + e—:ﬁ.r) -1 eﬂ‘.l‘ COS ﬁ‘

Vo = t,((r+iﬁ).x _ e(tr—iﬁ).x — X ( eiﬁx _ e—iﬁ.\') = 2ie®* sin Bx

-

where we used the Euler's formula ¢ = cos @ + i sin 6.
The last two results show that ¢“* cos Sx and ¢"* sin Sx are real solutions of (14) and
form the fundamental set on (—co, c0). The general solution is

y = c1e" cos Bx + e sinfx = € (¢ cos Bx + ¢ sin Bx).



Example 1: Solve the following DEs:

2y =5y =3y = 0
v/ =10y + 25y =

Yi+4y' +7y =

Example 2: Solve the following IVP:

' +4y +17y=0, y0)=-1, y(0)=2

Example 3:

2 2
Vi+ky=0 V' -ky=0

where k is real.



Undetermined coefficients

To solve a nonhomogeneous linear DE
any™ + ay1y"V + L+ ayy +agy = g(x)

we must
¢ find the complementary function y.; and
e find any particular solution y,, of the nonhomogeneous equation.

The general solution on an interval I is y = y. + y, where y. is the solution of the
associated homogeneous DE:

any™ + a1y V4 L+ apy’ +agy =0



Method of undetermined coefficients

To obtain a particular solution y, we will make an educated guess about the form of
yp motivated by the kind of function that makes up the input function g(x).

The general method is limited to nonhomogeneous linear DE where

e the coefficients, a;,i = 0, 1, ..., n are constants, and

e where g(x) is a constant, a polynomial function, an exponential function ¢**,
sine or cosine functions sinfx or cosfSx, or finite sums and products of these
functions.



The method of undetermined coefficients is not applicable to equations of the form
(15) if

1 _
glx)=Inx, gx)= > g(x)=tanx, g(x)=sin L x

Example 1: Solve y/ + 4y’ — 2y = 2x% — 3x + 6.

Solution:

Step 1: Solve associated homogeneous equation y”’ + 4y" — 2y = 0.

We find the roots of the auxiliary equatin m* + 4m — 2 = 0 are m; = -2 — V6 and
my = -2+ V6. The complementary function is thus

}y(_ — Cle_(2+ \/f_))t + (,28(—2"‘ JE)I



' +4y —2y=2x2-3x+6

Step 2: Since g(x) is quadratic polynomial, let us assume a particular solution in the
form

2
yp=Ax"+Bx+C

We wish to determine the coefficients A, B, and C for which y, is a solution of the
equation above:

\;,' + 4}-*;, — 2y, =2A+8Ax+4B - 2Ax* = 2Bx-2C =2x* - 3x +6

The coefficients of like powers of x must be equal, that is

-2A =2, 8A-2B=-3, 2A+4B-2C=6



Thisleadsto A = -1, B = -5/2, and C = -9, so this particular solution is

7 S
Vp = —X" - Ex -9,

Step 3: The general solution is then

@+Vo)x , . (-2¢VEx_ 2 2 ¢

V=V + \'P = Cle_ X 2_.

+ o€

Example 2: Particular solution using undetermined coefficients
Find a particular solution of y"/ — y" + y = 2sin 3x.

Example 3: Forming y, by superposition
Find a particular solution of y” — 2y’ — 3y = 4x — 5 + 6xe>*.

(15)

(16)



A glitch in the method:

Example 4: Find a particular solution of y"* — 5y" + 4y = 8e™.

Differentiation of ¢* produces no new function, so proceeding with the particular so-
lution assumed in the form of y, = Ae* leads to a contradiction 0 = 8e*.

In fact our y, is already contained in y. = cje* + 17284‘". Let us see whether we can
find a particular solution of the form

yp = Axe”

Substituting this solution into the DE and simplifying gives

Mg C o X _ QX R
Yp 5_)-p+4)p— 3Ae" = Be SO yp=—ZXxe



We distinguish two cases:

Case I: No function in the assumed particular solution is a solution of the associated
homogeneous differential equation.

Case IlI: A function in the assumed particular solution is also a solution of the asso-
ciated homogeneous differential equation.



Trial particular solutions

g(x) Form of y,
1. 1 (any constant) A
2. Sx+7 Ax+ B
3. 3x%-2 Ax* +Bx+C
4, xX—x+1 Ax® + BX*+Cx+ E
5. sindx Acosd4x + Bsindx
6. cosdx Acosdx + Bsindx
7. > Ae*
8. (9x—2)e" (Ax + B)e>*
9. x%e* (Ax% + Bx + C)e>*
10. e3*sindx Ae3* cosdx + Be3¥sindx
11. 5xZsindx (A,vc2 + Bx + C)cosdx + (Ex2+ Fx+ G)sindx

12. xe’*cosdx (Ax + B)e>* cos 4x + (Cx + E)e >~ sin 4x



Example 5: Forms of particular solution - Case |
Determine the form of a particular solution of

Y =8y +25y = S5xe F—e*

v/ +4y = xcosx

If g(x) consists of a sum of m terms of the kind listed in the table above, the assump-
tion for a particular solution y, consists of the sum of the trial forms yp,,vp,..... ¥p,
corresponding to these terms:

Yp = }"Pl + -\'PE Tt Y pn

The form rule for Case I: The form of y, is a linear combination of all linearly inde-
pendent functions that are generated by repeated differentiations of g(x).



Example 6: Forming y;, by superposition - Case |
Determine the form of a particular solution of

o) ) :
v’ =9y + 14y = 3x% — 5sin 2x + Txe®*

Solution:
32 = Vp; = Ax* +Bx +C
=5sin2x = yp, = Ecos2x+ Fsin2x
7xe* = Ypy = (Gx+ H )b+
Y = Yp tVpytVpy = Ax* + Bx + C + E cos 2x + Fsin2x + (Gx + H)e6"(

. " ] . . 2 p
No term in this solution duplicates a term in y. = cje** + cpe’™.



Example 7: Particular solution - Case Il
Find a particular solution of

Yi=2y'+y=e"
The complementary function is y. = c¢je* + ¢2xe*. Therefore we can not assume the
particular solution in the form y, = Ae* or y, = Axe” since these would duplicate the
terms in y.. We try
R 2 x
Vp = Ax"e

. The particular solution is

b2 —

Substituting this into the DE gives 2Ae* = ¢* and so A =

o 1.2 x
yp = 3x°er.



Suppose again that g(x) consists of m terms given by the table above, and that a
particular solution y,, consists of the sum:

Yp=Yp +Vpy + ..+ ¥p,

where y,,.i = 1,2, ...,m are the corresponding trial solution forms.

Multiplication rule for Case lI: If any y,. contains terms that duplicate terms in y.
then that y,. must be multiplied by x", where n is the smallest positive integer that
eliminates that duplication.



Example 8: An IVP

y'+y=4x+10sinx, y(r) =0, y'(n)=2 (17)

The solution of the associated homogeneous equation y"’ + y = 0 is y. = ¢j cos x +
¢ sin x. To avoid duplication we use

Vp =Ax+ B+ Cxcosx + Exsinx
The final solution of the IVP:

y=9rcosx+ 7sinx +4x—S5xcosx



Example 9: Using the multiplication rule, solve

V' =6y +9y = 6xF +2 — 123%

The solution of the associated homogeneous equation is y. = cje”* + cyxe~~, so we
choose the operative form of the particular solution to be

Yp = Ax? + Bx + C + Ex*e™*

Substituting into the differential equation and collecting like terms gives A =
C = % and E = —6. The general solution is then

I

— 8
7B_9:

) 24, 8 2 9 1y
Y=Ye+Yp = c1e° + caxe™ + X Xt 3o 6x%e"



The method of variation of parameters

Advantage: the method always yields a particular solution y,, provided the associ-
ated homogeneous equation can be solved. Also it is not limited to certain types of
g(x).

First we put a linear second-order DE

ax(x)y” + ay(x)y" + ap(x)y = g(x) (18)

into the standard form by dividing by a>(x)

Y+ P(x)y + Q(x)y = f(x) (19)



We seek a solution of the form

Vp = u(x)y(x) + uz(x)y2(x)

where y;| and y; form a fundamental set of solutions on I of the associated homoge-
neous form of (18). Using the product rule to differentiate y, twice gives

!
.\'p
N 2 g — '~ R ot - !
_\-p = ul}l +-"l“1 +_\1ul + ul_,_ | <+ ug}z +_)2uz +}2uz + 142_)2

Substituting these into the standard form (19) yields
Yy + Py, + Q)yp = ur [y + PY| + Qyi| +uz [y5 + Py + Qys| (20)

+yu) + uyy) + youy + usyy + P [ylu'l + ygu',] + Y U + Vst

= upy| +yuy + ugyy + yaus

d d
— [ylu'l] + — [)’2“3] + P [}’1“,1 + _vg_uf,l + y{U] + Yy,
dx dx < < i

d -
= gz D+ v2s] + P [y + yauis] + yiu + s = £



We need two equations for two unknown functions u; and u>. Assuming that these
functions satisfy y u} + y2u; = 0, the equation above reduces to yju} + yju5 = f(x).
By Cramer’s rule, the solution of the system

yiuy +yuy = 0
yiuy+yyuy = f(x)
can be expressed in terms of determinants:
W v f(x) Wr  yif(x)
! A ! L
Uy, = — = — and u, = = 21
L w 20w W 21)
where
yI » 0 »n yvi O
W = N Y Wl = .( _) Y W2 = N »( ‘) .
"‘l .\‘2 f A .\‘2 .\'l f X

The functions u; and u» are found by integrating the result in (21). The determinant
W is the Wronskian of y; and y>» whose linear independence ensures that W # 0.



Example: General solution using variation of parameters

2
v =4y + 4y = (x + 1)e”"

2x

- : 2 2 2
From the auxiliary equation m” — 4m + 4 = (m — 2)~ = 0 we have y. = cje”* + coxe™".

We identify y; = ¢** and y, = xe>* and evaluate the Wronskian

2 x
e.f..x X e....x

2% 2x ., 2
2t 2xe“t + et

dx

W = =€

The DE above is already in the standard form, so f(x) = (x + 1)e**, W; and W, are
then

.
et 0

- 2
202X (x+ 1)e2*

0 xe2X

4x
— _ =—(x+1xe™, Wy =
! (x + 1)@2-‘ 2xe2X + 2% ( ) ' 2




and so
x+ De™*
(x e =x+ 1

Ly’ = 1x% and Uy = %xz + x, and hence

It follows that u; = —3x7 — 5x
| 1 - (1 | 1
Vp ——x — —x?| e + [=x? + x| xe?F = —xPe?F + —xPe>*
3 2 2 2

l'he general solution is then
1 o1 .
X e 4 Exzez"

5
y = Ye+yp=cre”t +cyxe



unstretche

(a)

Linear models: initial value problem

(1) Spring-mass problem: free undamped motion
Newton'’s law

P dv d?x
=mdad=m-—=m—-=
dt dr?
Hook'’s law
F = —kx

By putting these two laws together we get the desired ODE

equilibrium
position
mg—ks=0

(b)




If we divide the equation by mass m and introduce the angular frequency w = Vk/m

d2x
—: +w2-x = 0
dr=

we have a homogeneous linear second-order which describes simple harmonic
motion or free undamped motion.

The initial conditions associated with the DE above are the amount of initial displace-
ment x(0) = xp, and the initial velocity of the mass x’(0) = x;.

To solve the equation, we note that the auxiliary equation m? + w?* = 0 has two
complex roots m; = iw and my = —iw, SO the general solution is to be

x(1) = ¢y cos wt + ¢ sin wt

We determine ¢| and ¢> from the initial condition and obtain the equation of motion.



Example: The equation of motion

2 |
x(f) = —cos 8 — —sin 8¢
3 6

-

Angular frequency: w = 8
Period: T = 2nn/w = 2n/8 = /4
Frequency: [ =1/T =4/n

Alternative form of x(7):

x(1) = Asin(wt + @)

where A = 4Jc| + ¢7 is the amplitude of free vibrations, and ¢ is the phase angle
defined by




To see the relation between the original solution and its alternative form, we use

trigonometry

x(f) =

In our specific example, we get

x(1)

€] COS Wl + ¢ sin wt

—Ccos 8 — —sin 8¢

! sin(87 + 1.816)

A sin ¢ cos wt + A cos ¢ sin wt
A sin(wrt + ¢)

f

X negative

X positive

X negative - } \/ W
| |

period
(b)



(2) Spring-mass problem: free damped motion

d%x dx
m % = —kx - ﬂE
By dividing by the mass m we get the DE of free damped motion:
Lk )
di2 mdr m
t + 2‘yg +w'x = 0
dr? dr

The corresponding auxiliary equation m* + 2ym + w* = 0 has the roots

mp = -y + \/y?- ~—w? and myp=-y- \/yz - w?

Each solution will contain the damping factor ¢ 7, vy > 0 and thus the displacements

of the mass become negligible over time.



Depending on the algebraic sign of y* — w?, we distinguish three cases:

e Casel: y* - w? >0

In this case the system is overdamped, as the damping coefficient g is large
compared to the spring constant k.

The corresponding solution x(7) = ¢1e™!! + c2e™2! is

N Y A
x(t)=e_7’(cle YWy ehe” VY “”)

\\/ ,




e Casell: Y2 - w? =0

In this case the system is critically damped, because a slight decrease of the
damping would result in oscillatory motion.

The general solution x(1) = ce™\ + cote™2! is

x(1) = e (¢ + ea1)




e Caselll: y> - w? <0

In this case the system is underdamped, as the damping coefficient is small
compared to the spring constant. The roots of the auxiliary equation are now

complex:
mp=-y+i\w2-y2 and my=-y-iw?-y>

and thus the general solution is

undamped
underdamped




(3) Spring-mass problem: driven motion

2
d-x

dx
+p—+kx = f(1
m ﬂdr X f(1)

dr?
By dividing by the mass m we get the DE of driven motion:
d2x+2 dx+ 2x = F()
a2 Ta Tt T

which is a nonhomogeneous differential equation whose solution can be obtained
either using

e the method of undetermined coefficients, or

o the method of variation of parameters.



X

1
steady-state x,,(f)

W/
Example: Transient/Steady-state solutions 7_\/ ,

The solution of the IVP o

1
/2

d>x  dx L, | "
d[z * 6dt * 10-‘ - 25 cos 41‘, dr(U) - i, . (0) =0 J\ x(1) = transient :
1k + steady state
is given by /\ / ,
38 86 25 50
x(1) = Xe + xp = e = cost — —sint| — —— cos 4f + — sin 4t P v
51 51 102 51 P L

(b)

where the first term represents the transient solution and the remaining two terms
are the steady state solution of the IVP.



Example: Undamped forced motion

Consider the IVP

dzx 2 : '
ﬁ +wpx = Fosmwt, x(0)=0, x(0)=0
the complementary solution is x.(f) = ¢ cos wyt + ¢3 sinwpt. We assume the partic-

ular solution in the form xp = Acoswrt + B sin wt, so that

’" 2 _ 2 2 2 AR _ .
Xp +wpxp = A (‘“0 - W )coswt + B(wo - w )smwt = Fpsinwt

Equating coefficients gives A = 0 and B = F/ (w(z) - wz), and thus the general

solution is

. F :
x(1) = cjcoswpt + ¢ sinwgt + 0 sin wt

(g - ?)




The initial conditions yield ¢; = 0 and ¢; = ~wFy/wy (w3 - w?), so the solution of the
IVP is
Fy

x(t) = . (—w sin wyt + wq sin wt)

wo () = )

Though the equation is not defined for w = wy, the limit @ — wq can be calculated
using he LHospital rule giving

, —wsinwql! + wpsinwt  Fp . F
x(t)y = lim Fy L 5 L = 0,) sin wqt — —0 4 cos wt
W) wy (a)(“) — w2) 20_)6 2(1)0

As time increases, so does the response of the system to the driving and the dis-
placements become large. This is the phenomenon of pure resonance.
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LRC-series electric circuit f 00000 \

i(r) - the current in a circuit at time ¢ L »
q(1) - the charge on the capacitor at time t % L
L - inductance
C - capacitance
R - resistance

3

According to Kirchhoff’'s second law, the impressed voltage E(r) must equal to
the sum of the voltage drops in the loop.

Vi + Ve + Vg =E(l)



Inductor

di d2q
Vi=L—=L—
L= "4 dr?
Capacitor
q
Ve = =
C~c
Resistor
dg
Ve =Ri = R—
R l dr
LRC circuit
dzq dg 1
L R —q = E(1
412 + dr + C‘! ()




Example: LRC circuit

Find the steady-state solution ¢, and the steady-state current in an LRC-series
circuit when the driving voltage is E(r) = Ejsin wi.

The steady-state solution ¢, is a particular solution of the differential equation

Using the method of undetermined coefficients, we assume the particular solution
of the form g,(1) = Asinwt + Bcos wt. Substituting this into the DE, simplifying and
equating coefficients gives

Eo(Lw - &) . EoR
—w(szz—%+ lw’-’ +R2), —w(szz— %+ Czlml +R2)




It is convenient to express this using the reactance X = Lw - 1/(Cw) and the
impedance Z = VX2 + R? (both measured in ohms). We get

EoX EgR
0 g Lo

A=

~wZ? T —wZ?
so the steady state charge is
EpX . EgR
1n(t) = — sIn wi — cos wt
I wZ? wZ?

and the steady-state current i,(r) = q;,(t)

) Eg (R . X
!p(f) = — (— sin wif — — cos wt)
Z \Z VA



