Introduction to differential equations II: overview

- Linear first-order differential equations
- Method of variation of parameters
- Solutions by substitutions
- Bernoulli equation
- Reduction to separation of variables
- Optional material: error function, exact DE, homogeneous functions

Linear equations

A differential equation that is of the first degree in the dependent variable and all its derivatives is said to be linear.

Definition: Linear equation

A first-order differential equation of the form

$$
\begin{equation*}
a_{1}(x) \frac{\mathrm{d} y}{\mathrm{~d} x}+a_{0}(x) y=g(x) \tag{4}
\end{equation*}
$$

is said to be linear.

If $g(x)=0$ the linear equation is said to be homogeneous, otherwise it is nonhomogeneous.

Standard form

By dividing both sides of (4) by $a_{1}(x)$ we get the standard form of a linear equation

$$
\begin{equation*}
\frac{\mathrm{d} y}{\mathrm{~d} x}+P(x) y=f(x) \tag{5}
\end{equation*}
$$

We seek a solution of the equation above on an interval I for which both functions P and f are continuous.

The property

The $\mathrm{DE}(5)$ has the property that its solution is the sum of two solutions, $y=y_{c}+y_{p}$, where y_{c} is the solution of the associated homogeneous equation

$$
\begin{equation*}
\frac{\mathrm{d} y}{\mathrm{~d} x}+P(x) y=0 \tag{6}
\end{equation*}
$$

and y_{p} is a particular solution of the nonhomogeneous equation (5). To see this

$$
\frac{\mathrm{d}}{\mathrm{~d} x}\left[y_{c}+y_{p}\right]+P(x)\left[y_{c}+y_{p}\right]=\left[\frac{\mathrm{d} y_{c}}{\mathrm{~d} x}+P(x) y_{c}\right]+\left[\frac{\mathrm{d} y_{p}}{\mathrm{~d} x}+P(x) y_{p}\right]=0+f(x)=f(x)
$$

The homogeneous equation (6) is also separable, so we can find y_{c} by integrating it

$$
y_{c}=c e^{-\int P(x) d x}=c y_{1}
$$

We now use the fact that $d y_{1} / d x+P(x) y=0$ to determine y_{p}.

The procedure: Variation of parameters

Idea: to find a function u so that $y_{p}=u(x) y_{1}(x)=u(x) e^{-\int P(x) d x}$ is a solution of (5).
Substituting $y_{p}=u y_{1}$ into the equation gives

$$
\begin{aligned}
u \frac{\mathrm{~d} y_{1}}{\mathrm{~d} x}+y_{1} \frac{\mathrm{~d} u}{\mathrm{~d} x}+P(x) u y_{1} & =f(x) \\
u\left[\frac{\mathrm{~d} y_{1}}{\mathrm{~d} x}+P(x) y_{1}\right]+y_{1} \frac{\mathrm{~d} u}{\mathrm{~d} x} & =f(x)
\end{aligned}
$$

and since y_{1} is the solution of the homogeneous equation, the expression in the square bracket is zero and

$$
y_{1} \frac{\mathrm{~d} u}{\mathrm{~d} x}=f(x)
$$

$$
y_{1} \frac{\mathrm{~d} u}{\mathrm{~d} x}=f(x)
$$

Separating variables and integrating then gives

$$
d u=\frac{f(x)}{y_{1}(x)} d x \quad \Rightarrow \quad u=\int \frac{f(x)}{y_{1}(x)} d x
$$

Since $y_{1}(x)=e^{-\int P(x) d x}, 1 / y_{1}(x)=e^{\int P(x) d x}$, and therefore

$$
y_{p}=u y_{1}=\left(\int \frac{f(x)}{y_{1}(x)} d x\right) e^{-\int P(x) d x}=e^{-\int P(x) d x} \int e^{\int P(x) d x} f(x) d x
$$

and the solution of (5) is then of the form

$$
y=y_{c}+y_{p}=c e^{-\int P(x) d x}+e^{-\int P(x) d x} \int e^{\int P(x) d x} f(x) d x
$$

There is an equivalent but easier way of solving (5). If the equation above is multiplied by $e^{\int P(x) d x}$ and differentiated we get

$$
\begin{aligned}
e^{\int P(x) d x} y & =c+\int e^{\int P(x) d x} f(x) d x \\
\frac{\mathrm{~d}}{\mathrm{~d} x}\left[e^{\int P(x) d x} y\right] & =e^{\int P(x) d x} f(x) \\
e^{\int P(x) d x} \frac{\mathrm{~d} y}{\mathrm{~d} x}+P(x) e^{\int P(x) d x} y & =e^{\int P(x) d x} f(x)
\end{aligned}
$$

Dividing the result by $e^{\int P(x) d x}$ gives (5).

Method of solving a linear first-order equation

(i) Put a linear equation of form (4) into the standard form

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}+P(x) y=f(x)
$$

and then determine $P(x)$ and the integrating factor $e^{\int P(x) d x}$.
(ii) Multiply the equation in its standard form by the integrating factor. The left side of the resulting equation is automatically the derivative of the integrating factor and y : write

$$
\frac{\mathrm{d}}{\mathrm{~d} x}\left[e^{\int P(x) d x} y\right]=e^{\int P(x) d x} f(x)
$$

and then integrate both sides of this equation.

Example:

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}-3 y=6
$$

The equation is already in the standard form. Since $P(x)=-3$, the integrating factor is $e^{\int(-3) d x}=e^{-3 x}$. By multiplying the equation by the integrating factor, we get

$$
e^{-3 x} \frac{\mathrm{~d} y}{\mathrm{~d} x}-3 e^{-3 x} y=6 e^{-3 x}
$$

which is the same as

$$
\frac{\mathrm{d}}{\mathrm{~d} x}\left[e^{-3 x} y\right]=6 e^{-3 x}
$$

Integrating both sides of the equation yields $e^{-3 x} y=-2 e^{-3 x}+c$, so the solution is

$$
y=-2+c e^{3 x}
$$

for $-\infty<x<\infty$. Note that the DE above is autonomous (a_{0}, a_{1} and g are constants) and it has one unstable critical point at $y=-2$.

Constant of integration

Considering the constant of integration in evaluation of the integrating factor $e^{\int P(x) d x}$, that is writting $e^{\int P(x) d x+c}$ is unnecessary as the integrating factor multiplies both sides of the differential equation.

Singular points

The recasting the linear equation (4) in the standard form (5) requires division by $a_{1}(x)$. Values of x for which the $a_{1}(x)=0$ are called singular points. They are potentially troublesome: if $P(x)$ formed by dividing $a_{0}(x)$ by $a_{1}(x)$ is discontinuous at a point, the discontinuity may carry over to solutions of the DE.

General solution

Recall that the functions $P(x)$ and $f(x)$ in (5) are continuous on a common interval I. Also, if (5) has a solution on I it must be of the form

$$
y=y_{c}+y_{p}=c e^{-\int P(x) d x}+e^{-\int P(x) d x} \int e^{\int P(x) d x} f(x) d x
$$

Conversely any function of this form is a solution of (5) on I. In other words, the solution above defines a one-parameter family of solutions of equation (5) and every solution of (5) defined on I is of this form. It is hence the general solution.

Now writing (5) in the normal form $y^{\prime}=F(x, y)$, we see that $F(x, y)=-P(x) y+f(x)$ and $\partial F / \partial y=-P(x)$. These must be continuous on the entire interval I because of the continuity of $P(x)$ and $f(x)$.

From the uniqueness theorem we conclude that there exists one and only one solution of the initial value problem

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}+P(x) y=f(x), \quad y\left(x_{0}\right)=y_{0}
$$

defined on some interval I_{0} containing x_{0} and that this interval of existence and uniqueness is the entire interval I.

Example: General solution

$$
x \frac{\mathrm{~d} y}{\mathrm{~d} x}-4 y=x^{6} e^{x}
$$

The standard from

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}-\frac{4}{x} y=x^{5} e^{x}
$$

from which $P(x)=-4 / x, f(x)=x^{5} e^{x}$ and both are continuous on $(0, \infty)$. The integrating factor is then

$$
e^{-4 \int d x / x}=e^{-4 \ln x}=e^{\ln x^{-4}}=x^{-4}
$$

We multiply the standard form by x^{-4} and integrate by parts

$$
x^{-4} \frac{\mathrm{~d} y}{\mathrm{~d} x}-4 x^{-5} y=x e^{x} \quad \Rightarrow \quad \frac{\mathrm{~d}}{\mathrm{~d} x}\left[x^{-4} y\right]=x e^{x} \quad \Rightarrow \quad x^{-4} y=x e^{x}-e^{x}+c
$$

The general solution defined on $(0, \infty)$ is then $y=x^{5} e^{x}-x^{4} e^{x}+c x^{4}$.

Example: General solution

$$
\begin{aligned}
& \left(x^{2}-9\right) \frac{\mathrm{d} y}{\mathrm{~d} x}+x y=0 \\
& \Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} x}+\frac{x}{x^{2}-9} y=0
\end{aligned}
$$

Thus $P(x)=x /\left(x^{2}-9\right)$. Although it is continuous on $(-\infty,-3),(-3,3)$, and $(3, \infty)$, we will solve it at the first and the third interval on which the integrating factor is

$$
e^{\int x d x /\left(x^{2}-9\right)}=e^{1 / 2 \int 2 x d x /\left(x^{2}-9\right)}=e^{1 / 2 \ln \left|x^{2}-9\right|}=\sqrt{x^{2}-9}
$$

After multiplying the standard form by the integrating factor and integrating we get

$$
\frac{\mathrm{d}}{\mathrm{~d} x}\left[\sqrt{x^{2}-9} y\right]=0 \quad \Rightarrow \quad \sqrt{x^{2}-9} y=c
$$

thus for either $x<-3$ or $x>3$, the general solution is $y=c / \sqrt{x^{2}-9}$.

Example: An IVP

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}+y=x, \quad y(0)=4
$$

$P(x)=1, f(x)=x$ are continuous on $(-\infty, \infty)$. The integrating factor is $e^{\int d x}=e^{x}$, and so integrating

$$
\frac{\mathrm{d}}{\mathrm{~d} x}\left[e^{x} y\right]=x e^{x}
$$

gives $e^{x} y=x e^{x}-e^{x}+c$. The general solution is then $y=x-1+c e^{-x}$. From the initial condition, $y(0)=4$ we obtain the value of the integrating constant $c=5$, and thus the solution of our IVP is

$$
y=x-1+5 e^{-x}, \quad-\infty<x<\infty
$$

The general solution of every linear first order DE is a sum, $y=y_{c}+y_{p}$, of the solution of the associated homogeneous equation (6) and a particular solution of the nonhomogeneous equation.

In the example above, $y_{c}=c e^{-x}$ and $y_{p}=x-1$.

Observe that as x gets large, the graphs of all members of the family get close to the graph of y_{p}, as y_{c} becomes negligible.

We say $y_{c}=c e^{-x}$ is a transient term since $y_{c} \rightarrow 0$ as $x \rightarrow \infty$.

Example: A discontinuous $f(x)$

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}+y=f(x)
$$

where $f(x)=1$ for $0 \leq x \leq 1$, and $f(x)=0$ for $x>1$; the initial condition is $y(0)=0$.

We solve the problem in two intervals over which f is defined. For $0 \leq x \leq 1$:

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}+y=1 \quad \Rightarrow \quad \frac{\mathrm{~d}}{\mathrm{~d} x}\left[e^{x} y\right]=e^{x}
$$

we get $y=1+c_{1} e^{-x}$ and since $y(0)=0$ we have $c_{1}=-1$, and so $y=1-e^{-x}$.

For $x>1$ the equation

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}+y=0
$$

leads to the solution $y=c_{2} e^{-x}$. So the solution in both intervals is

$$
y= \begin{cases}1-e^{-x} & \text { if } 0 \leq x \leq 1 \\ c_{2} e^{-x} & \text { if } x>1\end{cases}
$$

In order for y to be continuous, we want $\lim _{x \rightarrow 1^{+}} y(x)=y(1)$, that is, $c_{2} e^{-1}=1-e^{-1}$ or $c_{2}=e-1$. The function

$$
y= \begin{cases}1-e^{x} & \text { if } 0 \leq x \leq 1 \\ (e-1) e^{-x} & \text { if } x>1\end{cases}
$$

is continuous on $(0, \infty)$.

Solutions by substitutions

We first transform a given differential equation

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=f(x, y)
$$

by means of substitution $y=g(x, u)$ into another differential equation

$$
\begin{aligned}
\frac{\mathrm{d} y}{\mathrm{~d} x} & =g_{x}(x, u)+g_{u}(x, u) \frac{\mathrm{d} u}{\mathrm{~d} x} \\
f(x, g(x, u)) & =g_{x}(x, u)+g_{u}(x, u) \frac{\mathrm{d} u}{\mathrm{~d} x}
\end{aligned}
$$

where we assumed that $g(x, u)$ possesses the first partial derivatives, so we could apply the chain rule.

The last equation above can be reformulated as $d u / d x=F(x, u)$. If we can find its solution $u=\phi(x)$, then a solution of the original equation is $y=g(x, \phi(x))$.

Bernoulli equation

is a special type of first-order ODE which can be reduced to linear form and then solved by the method for linear ODE:

$$
\begin{equation*}
\frac{\mathrm{d} y}{\mathrm{~d} x}+M(x) y=N(x) y^{n} \tag{7}
\end{equation*}
$$

where n is any real number.

It can be transformed into the linear form as follows:

$$
u=y^{1-n} \quad \Rightarrow \quad u=y y^{-n} \quad \Rightarrow \quad y=y^{n} u
$$

Differentiating this gives

$$
\frac{\mathrm{d} u}{\mathrm{~d} x}=(1-n) y^{-n} \frac{\mathrm{~d} y}{\mathrm{~d} x}
$$

or

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\left(\frac{y^{n}}{1-n}\right) \frac{\mathrm{d} u}{\mathrm{~d} x}
$$

Substituting this into the Bernoulli equation (7) gives

$$
\left(\frac{y^{n}}{1-n}\right) \frac{\mathrm{d} u}{\mathrm{~d} x}+M(x) y^{n} u=N(x) y^{n}
$$

Dividing by y^{n} and multiplying by $(1-n)$ gives

$$
\frac{\mathrm{d} u}{\mathrm{~d} x}+(1-n) M(x) u=(1-n) N(x)
$$

which is a linear ODE with $P(x)=(1-n) M(x)$ and $f(x)=(1-n) N(x)$.

Example: A Bernoulli equation

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}+\frac{1}{3} y=\frac{1}{3}(1-2 x) y^{4}
$$

where $n=4, M(x)=1 / 3$, and $N(x)=(1-2 x) / 3$. Using the transformation

$$
u=y^{1-n}=y^{-3}
$$

we obtain the linear ODE

$$
\begin{aligned}
\frac{\mathrm{d} u}{\mathrm{~d} x}+(1-n) M(x) u & =(1-n) N(x) \\
\Rightarrow \quad \frac{\mathrm{d} u}{\mathrm{~d} x}-u & =(2 x-1)
\end{aligned}
$$

whose solution is $u(x)=c e^{x}-(2 x+1)$; the solution of the original equation is then $y=1 /\left[c e^{x}-(2 x+1)\right]^{1 / 3}$.

Reduction to separation of variables

A differential equation of the form

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=f(A x+B y+C)
$$

can always be reduced to an equation with separable variables by means of the substituition $u=A x+B y+C$.

Example: An IVP

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=(-2 x+y)^{2}-7, \quad y(0)=0
$$

Let $u=-2 x+y$, then $d u / d x=-2+d y / d x$ and so the DE is transformed into a separable equation

$$
\frac{\mathrm{d} u}{\mathrm{~d} x}+2=u^{2}-7 \quad \text { or } \quad \frac{\mathrm{d} u}{\mathrm{~d} x}=u^{2}-9
$$

The transformed equation can be solved using the partial fractions

$$
\begin{aligned}
& \frac{d u}{(u-3)(u+3)}=d x \\
& \Rightarrow \text { or } \quad \\
& \frac{1}{6} \ln \left\lvert\, \frac{1}{6}\left[\left.\frac{1}{u+3} \right\rvert\,=x+c_{1}\right.\right. \text { or } \\
& \frac{u-3}{u+3}=e^{6 x+6 c_{1}}
\end{aligned}
$$

After solving the last equation for u and then resubstituting we get

$$
u=\frac{3\left(1+c e^{6 x}\right)}{1-c e^{6 x}} \quad \text { or } \quad y=2 x+\frac{3\left(1+c e^{6 x}\right)}{1-c e^{6 x}}
$$

and by applying the initial condition we get $c=-1$

$$
y=2 x+\frac{3\left(1-e^{6 x}\right)}{1+e^{6 x}}
$$

OPTIONAL

Functions defined by integrals

Integrals of functions, which do not possess indefinite integrals that are elementary functions, are called nonelementary.

Error function

$$
\operatorname{erf}(x)=\frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-t^{2}} d t
$$

Complementary error function

$$
\operatorname{erfc}(x)=\frac{2}{\sqrt{\pi}} \int_{x}^{\infty} e^{-t^{2}} d t
$$

Since $2 / \sqrt{\pi} \int_{0}^{\infty} e^{-t^{2}} d t=1, \operatorname{erf}(x)+\operatorname{erfc}(x)=1$. Also $\operatorname{erf}(0)=0$.

OPTIONAL

Example: The error function

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}-2 x y=2, \quad y(0)=1
$$

The integrating factor is $e^{-x^{2}}$, and so from

$$
\frac{\mathrm{d}}{\mathrm{~d} x}\left[e^{-x^{2}} y\right]=2 e^{-x^{2}} \Rightarrow y=2 e^{x^{2}} \int_{0}^{x} e^{-t^{2}} d t+c e^{x^{2}}
$$

From the initial value we get $c=1$ and thus the solution of the IVP is

$$
y=2 e^{x^{2}} \int_{0}^{x} e^{-t^{2}} d t+e^{x^{2}}=e^{x^{2}}[1+\sqrt{\pi} \operatorname{erf}(x)]
$$

OPTIONAL

Exact equations

A differential expression $M(x, y) d x+N(x, y) d y$ is an exact differential in a region R of the $x y$-plane if it corresponds to the differential of some function $f(x, y)$, i.e.

$$
d f=\frac{\partial f}{\partial x} d x+\frac{\partial f}{\partial y} d y
$$

A first order differential equation of the form

$$
M(x, y) d x+N(x, y) d y=0
$$

is said to be an exact equation if the expression on the I. h. s. is an exact differential.

Example: $x^{2} y^{3} d x+x^{3} y^{2} d y=0$ is exact as $d\left(x^{3} y^{3} / 3\right)=x^{2} y^{3} d x+x^{3} y^{2} d y$.

OPTIONAL

Theorem: Criterion for an exact differential

Let $M(x, y)$ and $N(x, y)$ be continuous and have continuous first partial derivatives in the region R defined by $a<x<b$ and $c<y<d$. Then a necessary and sufficient condition that $M(x, y) d x+N(x, y) d y$ be an exact differential is

$$
\frac{\partial M(x, y)}{\partial y}=\frac{\partial N(x, y)}{\partial x}
$$

Proof:

$$
\frac{\partial M}{\partial y}=\frac{\partial}{\partial y}\left(\frac{\partial f}{\partial x}\right)=\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial y}\right)=\frac{\partial N}{\partial x}
$$

OPTIONAL

Example: Solution of an exact equation

$$
2 x y d x+\left(x^{2}-1\right) d y=0
$$

$M(x, y)=2 x y$ and $N(x, y)=x^{2}-1$, we get $\partial M / \partial y=2 x=\partial N / \partial x$, so the equation is exact and there exist a function $f(x, y)$ such that

$$
\frac{\partial f}{\partial x}=2 x y \quad \text { or } \quad \frac{\partial f}{\partial y}=x^{2}-1
$$

Integrating the first equation gives

$$
f(x, y)=x^{2} y+g(y)
$$

OPTIONAL

By taking now the partial derivative w.r.t. y we obtain

$$
\frac{\partial f}{\partial y}=x^{2}+g^{\prime}(y)=x^{2}-1
$$

from which it follows that $g^{\prime}(y)=-1$ and $g(y)=-y$.

Hence $f(x, y)=x^{2} y-y$, and so the solution of the equation in implicit form is

$$
x^{2} y-y=c
$$

The explicit solution is $y=c /\left(x^{2}-1\right)$ and is defined on any interval not containing $x= \pm 1$.

OPTIONAL

Homogeneous equations

A first-order DE in differential form

$$
M(x, y) d x+N(x, y) d y=0
$$

is said to be homogeneous if both coefficients M and N are homogeneous functions of the same degree α, i.e.

$$
M(t x, t y)=t^{\alpha} M(x, y) \quad N(t x, t y)=t^{\alpha} N(x, y)
$$

Introducing $u=y / x$ and $v=x / y$, we can rewrite the coefficients as

$$
\begin{aligned}
M(x, y)=x^{\alpha} M(1, u) & N(x, y)=x^{\alpha} N(1, u) \\
M(x, y)=y^{\alpha} M(v, 1) & N(x, y)=y^{\alpha} N(v, 1)
\end{aligned}
$$

OPTIONAL

Either of the substitutions above, $y=u x$ or $x=v y$, will reduce a homogeneous equation to a separable first order ODE:

$$
\begin{aligned}
M(x, y) d x+N(x, y) d y & =0 \\
\Rightarrow \quad x^{\alpha} M(1, u) d x+x^{\alpha} N(1, u) d y & =0 \\
\Rightarrow \quad M(1, u) d x+N(1, u) d y & =0
\end{aligned}
$$

By substituting the differential $d y=u d x+x d u$, we get a separable DE in the variables u and x :

$$
\begin{array}{r}
M(1, u) d x+N(1, u)[u d x+x d u]
\end{array}=0
$$

OPTIONAL

Example: Solving a homogeneous DE

$$
\left(x^{2}+y^{2}\right) d x+\left(x^{2}-x y\right) d y=0
$$

The coefficients $M(x, y)=x^{2}+y^{2}$ and $N(x, y)=x^{2}-x y$ are homogeneous functions of the degree 2. Let $y=u x$, then $d y=u d x+x d u$, and the given DE becomes

$$
\begin{aligned}
\left(x^{2}+u^{2} x^{2}\right) d x+\left(x^{2}-u x^{2}\right)[u d x+x d u] & =0 \\
x^{2}(1+u) d x+x^{3}(1-u) d u & =0 \\
\frac{1-u}{1+u} d u+\frac{d x}{x}=0 & \\
{\left[-1+\frac{2}{1+u}\right] d u+\frac{d x}{x}=0 } &
\end{aligned}
$$

OPTIONAL

$$
\left[-1+\frac{2}{1+u}\right] d u+\frac{d x}{x}=0
$$

After integration, and transformation back to the original variables, we get

$$
-u+2 \ln |1+u|+\ln |x|=\ln |c| \quad \Rightarrow \quad-\frac{y}{x}+2 \ln \left|1+\frac{y}{x}\right|+\ln |x|=\ln |c|
$$

Using the properties of logarithms, the solution can be written as $(x+y)^{2}=c x e^{y / x}$.

Intuitive interpretation of a linear ODE

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}+P(x) y=f(x)
$$

The function $f(x)$ often represents some controllable quantity, such as a force or an applied voltage, which can be interpreted as the input to the system. Within this interpretation, we can view the dependent variable $y(x)$ as an output or as an effect which is produced in response to the input(s).

In the general solution of the linear ODE

$$
y=e^{-\int P(x) d x} \int e^{\int P(x) d x} f(x) d x+c e^{-\int P(x) d x}
$$

the first term can be viewed as the system response to the input $f(x)$ and the second term as the influence of the initial state of the system.

Modelling an RC-circuit

A resistor of resistance R is connected in series with a capacitor of capacitance C and a source of electromotive force in the form of an applied voltage, $V(t)$. When the circuit is closed, a current $i(t)$ will flow through it.

According to the Kirchhoff second law with this circuit, the voltage drops at the capacitor and resistor equal the applied voltage:

$$
V_{R}+V_{C}=V(t)
$$

where $V_{R}=R i$ and $V_{C}=q / C=\int i d t / C$. Thus we ge ${ }^{+}$

$$
R i+\frac{1}{C} \int i d t=V(t)
$$

Let us differentiate w.r.t. t and divide by R, to get

$$
\frac{\mathrm{d} i}{\mathrm{~d} t}+\frac{1}{R C} i=\frac{1}{R} \frac{\mathrm{~d} V(t)}{\mathrm{d} t}
$$

This equation has the form which is the standard form of the linear equation where $P(t)=1 / R C$ and $f(t)=(1 / R) d V(t) / d t$. The integrating factor is then

$$
e^{\int \frac{1}{R C} d t}=e^{\frac{t}{R C}}
$$

so the general solution becomes

$$
i(t)=e^{-\frac{t}{R C}}\left(\frac{1}{R} \int e^{\frac{t}{R C}} \frac{\mathrm{~d} V(t)}{\mathrm{d} t} d t+c\right)
$$

Case 1: $V(t)=$ constant

In this case we get $\frac{\mathrm{d} V(t)}{\mathrm{d} t}=0$ and so

$$
i(t)=c e^{-\frac{t}{R C}}
$$

The current in this case decays with time eventually approaching zero

Case 2: $V(t)=V_{0} \sin (\omega t)$
Substituting this into the general form of the solution we get

$$
i(t)=e^{-\frac{t}{R C}}\left(\frac{1}{R} \int e^{\frac{t}{R C}} V_{0} \omega \cos (\omega t) d t+c\right)
$$

Integrating by parts and using trigonometric relations gives

$$
\begin{aligned}
i(t) & =c e^{-\frac{t}{R C}}+\frac{\omega V_{0} C}{1+(\omega R C)^{2}}[\cos (\omega t)+\omega R C \sin (\omega t)] \\
& =c e^{-\frac{t}{R C}}-\frac{\omega V_{0} C}{\sqrt{1+(\omega R C)^{2}}} \sin (\omega t-\phi)
\end{aligned}
$$

where $\tan (\phi)=-1 / \omega R C$.
The response involves two terms: an exponential decay and steady state response to oscillating external voltage, oscillating with ω and the amplitude $\frac{\omega V_{0} C}{\sqrt{1+(\omega R C)^{2}}}$.

