Z-Transform

The Laplace transform deals with continuous functions and can be used to solve differential equations.

Similarly, the Z-transform deals with discrete sequences and the recurrence relations - or difference equations.

Sequences

Consider the sequence $\ldots, 3^{-2}, 3^{-1}, 3^{0}, 3^{1}, 3^{2} \ldots$. It has a general form 3^{k} and using a shorthand notation we can write the sequence as $\left\{3^{k}\right\}_{-\infty}^{\infty}$ indicating also that the powers range from $-\infty$ to ∞.

The sum

$$
\begin{equation*}
\sum_{k=-\infty}^{\infty}\left(\frac{3}{z}\right)^{k}=\ldots\left(\frac{3}{z}\right)^{-1}+\left(\frac{3}{z}\right)^{0}+\left(\frac{3}{z}\right)^{1}+\left(\frac{3}{z}\right)^{2} \ldots \tag{1}
\end{equation*}
$$

is called the \mathbb{Z}-transform of the sequence, $\mathcal{Z}\left\{3^{k}\right\}_{-\infty}^{\infty}$ and is denoted $F(z)$ where the complex number z is chosen to ensure that the sum is finite.

We say that $\left\{3^{k}\right\}_{-\infty}^{\infty}$ and $\mathcal{Z}\left\{3^{k}\right\}_{-\infty}^{\infty}=F(z)=\sum_{k=-\infty}^{\infty}\left(\frac{3}{z}\right)^{k}$ form a Z-transform pair.

For our purposes we shall consider only causal sequences of the form $\left\{x_{k}\right\}_{0}^{\infty}$ where $x_{k}=0$ for $k<0$:

$$
\begin{equation*}
\mathcal{Z}\left\{x_{k}\right\}=F(z)=\sum_{k=0}^{\infty} \frac{x_{k}}{z^{k}} \tag{2}
\end{equation*}
$$

Example 1: $\quad\left\{\delta_{k}\right\}=\{1,0,0, \ldots\}$

$$
\mathcal{Z}\left\{\delta_{k}\right\}=F(z)=1+\frac{0}{z}+\frac{0}{z^{2}}+\frac{0}{z^{3}}+\ldots=1
$$

Example 2: The unit step sequence: $\left\{u_{k}\right\}=\{1,1,1, \ldots\}$

$$
\mathcal{Z}\left\{u_{k}\right\}=F(z)=\sum_{k=0}^{\infty} \frac{1}{z^{k}}=1+\frac{1}{z}+\frac{1}{z^{2}}+\frac{1}{z^{3}}+\ldots
$$

Comparing this to the series expansion of $\frac{1}{1-x}=1+x+x^{2}+x^{3}+\ldots$ which is valid for $|x|<1$ we get

$$
F(z)=\frac{1}{1-\frac{1}{z}} \quad \text { provided }\left|\frac{1}{z}\right|<1
$$

or

$$
F(z)=\frac{z}{z-1} \quad \text { provided } \quad|z|>1
$$

Example 3: $\quad\left\{x_{k}\right\}=\left\{1, a, a^{2}, a^{3}, \ldots\right\}=\left\{a^{k}\right\}$

$$
\mathcal{Z}\left\{a^{k}\right\}=\sum_{k=0}^{\infty} \frac{a^{k}}{z^{k}}=1+\frac{a}{z}+\frac{a^{2}}{z^{2}}+\frac{a^{3}}{z^{3}}+\ldots
$$

Comparing this to the series expansion of $\frac{1}{1-x}=1+x+x^{2}+x^{3}+\ldots$ which is valid for $|x|<1$ then

$$
\begin{aligned}
F(z) & =1+\frac{a}{z}+\frac{a^{2}}{z^{2}}+\frac{a^{3}}{z^{3}}+\ldots \\
& =\frac{1}{1-\frac{a}{z}} \text { provided }\left|\frac{a}{z}\right|<1
\end{aligned}
$$

or

$$
F(z)=\frac{z}{z-a} \text { provided } \quad|z|>|a|
$$

Example 4: $\quad\left\{x_{k}\right\}=\{0,1,2,3,4, \ldots\}=\{k\}$

$$
\mathcal{Z}\{k\}=F(z)=\sum_{k=0}^{\infty} \frac{k}{z^{k}}=0+\frac{1}{z}+\frac{2}{z^{2}}+\frac{3}{z^{3}}+\frac{4}{z^{4}}+
$$

Comparing this with the derivative of $(1-x)^{-1}$ and its series expansion
$1+2 x+3 x^{2}+4 x^{3}+\ldots=\frac{\mathrm{d}}{\mathrm{d} x}\left(1+x+x^{2}+x^{3}+x^{4}+\ldots\right)=\frac{\mathrm{d}}{\mathrm{d} x}(1-x)^{-1}=\frac{1}{(1-x)^{2}}$
we can write

$$
z F(z)=1+\frac{2}{z}+\frac{3}{z^{2}}+\frac{4}{z^{3}}+\ldots=\frac{1}{(1-1 / z)^{2}}
$$

and dividing both sides by z we obtain

$$
F(z)=\frac{1}{z(1-1 / z)^{2}}=\frac{z}{(z-1)^{2}}
$$

Table of Z transforms

$$
\begin{aligned}
\left\{\delta_{k}\right\} & =\{1,0,0,0, \ldots\} & 1 & \text { All values } 0 \\
\left\{u_{k}\right\} & =\{1,1,1,1, \ldots\} & \frac{z}{z-1} & |z|>1 \\
\{k\} & =\{0,1,2,3, \ldots\} & \frac{z}{(z-1)^{2}} & |z|>1 \\
\left\{k^{2}\right\} & =\{0,1,4,9, \ldots\} & \frac{z(z+1)}{(z-1)^{3}} & |z|>1 \\
\left\{k^{3}\right\} & =\{0,1,8,27, \ldots\} & \frac{z\left(z^{2}+4 z+1\right)}{(z-1)^{4}} & |z|>1 \\
\left\{a^{k}\right\} & =\left\{1, a, a^{2}, a^{3}, \ldots\right\} & \frac{z}{(z-a)} & |z|>|a| \\
\left\{k a^{k}\right\} & =\left\{0, a, 2 a^{2}, 3 a^{3}, \ldots\right\} & \frac{a z}{(z-a)^{2}} & |z|>|a|
\end{aligned}
$$

Properties of Z transforms

1 Linearity

The Z transform is a linear transform, that is

$$
\begin{equation*}
\mathcal{Z}\left\{a x_{k}+b y_{k}\right\}=a \mathcal{Z}\left\{x_{k}\right\}+b \mathcal{Z}\left\{y_{k}\right\} \tag{3}
\end{equation*}
$$

where a and b are constants.

Example 5: $3\{k\}-5\left\{e^{-2 k}\right\}$

$$
\begin{aligned}
\mathcal{Z}\{k\} & =\frac{z}{(z-1)^{2}} \\
\mathcal{Z}\left\{a^{k}\right\} & =\frac{z}{z-a} \Rightarrow \mathcal{Z}\left\{e^{-2 k}\right\}=\frac{z}{z-e^{-2}}
\end{aligned}
$$

Consequently

$$
\begin{aligned}
\mathcal{Z}\left(3\{k\}-5\left\{e^{-2 k}\right\}\right) & =\frac{3 z}{(z-1)^{2}}-\frac{5 z}{\left(z-e^{-2}\right)} \\
& =\frac{-5 z^{3}+13 z^{2}-z\left(3 e^{-2}+5\right)}{(z-1)^{2}\left(z-e^{-2}\right)}
\end{aligned}
$$

2 First shifting theorem

If $\mathcal{Z}\left\{x_{k}\right\}=F(z)$ then

$$
\begin{equation*}
\mathcal{Z}\left\{x_{k+m}\right\}=z^{m} F(z)-\left[z^{m} x_{0}+z^{m-1} x_{1}+\ldots+z x_{m-1}\right] \tag{4}
\end{equation*}
$$

is the \mathbf{Z} transform of the sequence that has been shifted by m places to the left.

Example:

$$
\begin{aligned}
\mathcal{Z}\left\{x_{k+1}\right\} & =z F(z)-z x_{0} \\
\mathcal{Z}\left\{x_{k+2}\right\} & =z^{2} F(z)-z^{2} x_{0}-z x_{1}
\end{aligned}
$$

Example 6: $\left\{4^{k+3}\right\}$
Given

$$
\begin{aligned}
\mathcal{Z}\left\{4^{k}\right\} & =\frac{z}{z-4} \\
\mathcal{Z}\left\{4^{k+3}\right\} & =z^{3} \mathcal{Z}\left\{4^{k}\right\}-\left[z^{3} 4^{0}+z^{2} 4^{1}+z 4^{2}\right] \\
& =z^{3} \frac{z}{z-4}-\left[z^{3}+4 z^{2}+16 z\right]=\frac{z^{4}}{z-4}-\left[z^{3}+4 z^{2}+16 z\right] \\
& =\frac{z^{4}-\left[z^{3}+4 z^{2}+16 z\right](z-4)}{z-4}=\frac{z^{4}-\left(z^{4}-64 z\right)}{z-4} \\
& =\frac{64 z}{z-4}
\end{aligned}
$$

We have just derived the Z transform of the sequence $\{64,256,1024, \ldots\}$ by shifting $\{1,4,16,64,256, \ldots\}$ three places to the left and loosing the first three terms.

Example 7: $\quad\{k+1\}$

$$
\begin{aligned}
\mathcal{Z}\{k\} & =\frac{z}{(z-1)^{2}} \\
\mathcal{Z}\{k+1\} & =z \frac{z}{(z-1)^{2}}-[z \times 0] \\
& =\frac{z^{2}}{(z-1)^{2}}
\end{aligned}
$$

3 Second shift theorem

If $\mathcal{Z}\left\{x_{k}\right\}=F(z)$ then

$$
\begin{equation*}
\mathcal{Z}\left\{x_{k-m}\right\}=z^{-m} F(z) \tag{5}
\end{equation*}
$$

is the Z transform of the sequence that has been shifted by m places to the right.
Example 8:
Given

$$
\mathcal{Z}\left\{x_{k}\right\}=\frac{z}{z-1}
$$

then

$$
\mathcal{Z}\left\{x_{k-3}\right\}=z^{-3} \frac{z}{z-1}=\frac{1}{z^{2}(z-1)}
$$

We thus derived the Z transform of the sequence $\{0,0,0,1,1,1, \ldots\}$ by shifting $\{1,1,1, \ldots\}$ three places to the right and defining the first three terms as zeros.

Example 9:

Given the Z transform

$$
\mathcal{Z}\left\{x_{k}\right\}=\frac{1}{z-a}
$$

where a is a constant. The sequence $\left\{x_{k}\right\}$ is

$$
\left\{a^{k-1}\right\}
$$

because

$$
\frac{1}{z-a}=\frac{1}{z} \times \frac{z}{z-a}=z^{-1} F(z)
$$

where $F(z)=\mathcal{Z}\left\{a^{k}\right\}$ and so

$$
\frac{1}{z-a}=\mathcal{Z}\left\{a^{k-1}\right\}
$$

4 Translation

If the sequence $\left\{x_{k}\right\}$ has the Z transform $\mathcal{Z}\left\{x_{k}\right\}=F(z)$ then the sequence $\left\{a^{k} x_{k}\right\}$ has the Z transform $\mathcal{Z}\left\{a^{k} x_{k}\right\}=F\left(a^{-1} z\right)$.

Example 10:

$$
\mathcal{Z}\{k\}=\frac{z}{(z-1)^{2}}
$$

so

$$
\mathcal{Z}\left\{2^{k} k\right\}=F\left(2^{-1} z\right)=\frac{2^{-1} z}{\left(2^{-1} z-1\right)^{2}}=\frac{2 z}{(z-2)^{2}}
$$

5 Final value theorem

For the sequence $\left\{x_{k}\right\}$ with Z transform $F(z)$

$$
\begin{equation*}
\lim _{k \rightarrow \infty} x_{k}=\lim _{z \rightarrow 1}\left\{\left(\frac{z-1}{z}\right) F(z)\right\} \tag{6}
\end{equation*}
$$

provided that $\lim _{k \rightarrow \infty} x_{k}$ exists.
Example: The sequence $\left\{\left(\frac{1}{2}\right)^{k}\right\}$ has the Z transform

$$
F(z)=\frac{z}{z-\frac{1}{2}}=\frac{2 z}{2 z-1}
$$

so

$$
\lim _{k \rightarrow \infty}\left\{\left(\frac{1}{2}\right)^{k}\right\}=\lim _{z \rightarrow 1}\left\{\left(\frac{z-1}{z}\right) F(z)\right\}=\lim _{z \rightarrow 1}\left\{\frac{2(z-1)}{2 z-1}\right\}=0
$$

Example 11:

Using the final value theorem, the final value of the sequence with the Z transform

$$
\begin{equation*}
F(z)=\frac{10 z^{2}+2 z}{(z-1)(5 z-1)^{2}} \tag{7}
\end{equation*}
$$

is calculated as follows

$$
\begin{aligned}
\lim _{z \rightarrow 1}\left\{\left(\frac{z-1}{z}\right) F(z)\right\} & =\lim _{z \rightarrow 1}\left\{\left(\frac{z-1}{z}\right) \frac{10 z^{2}+2 z}{(z-1)(5 z-1)^{2}}\right\} \\
& =\lim _{z \rightarrow 1}\left\{\frac{10 z+2}{(5 z-1)^{2}}\right\} \\
& =\frac{12}{16} \\
& =0.75
\end{aligned}
$$

6 The initial value theorem

For the sequence $\left\{x_{k}\right\}$ with the Z transform $F(z)$

$$
\begin{equation*}
x_{0}=\lim _{z \rightarrow \infty}\{F(z)\} \tag{8}
\end{equation*}
$$

Example:

The sequence $\left\{a^{k}\right\}$ has the Z transform $F(z)=\frac{z}{z-a}$ and, using the l'Hospital rule,

$$
\lim _{z \rightarrow \infty} F(z)=\lim _{z \rightarrow \infty} \frac{z}{z-a}=\lim _{z \rightarrow \infty} \frac{1}{1}=1
$$

Furthermore $x_{0}=a^{0}=1$.

7 The derivative of the transform
If $\mathcal{Z}\left\{x_{k}\right\}=F(z)$ then

$$
\begin{equation*}
-z F^{\prime}(z)=\mathcal{Z}\left\{k x_{k}\right\} \tag{9}
\end{equation*}
$$

Proof:

$$
F(z)=\sum_{k=0}^{\infty} x_{k} z^{-k}
$$

and so

$$
\begin{aligned}
F^{\prime}(z) & =\sum_{k=0}^{\infty} x_{k}(-k) z^{-k-1}=-\frac{1}{z} \sum_{k=0}^{\infty} x_{k} k z^{-k} \\
& =-\frac{1}{z} \mathcal{Z}\left\{k x_{k}\right\}
\end{aligned}
$$

Example 12:

The sequence $\left\{a^{k}\right\}$ has the Z transform $F(z)=\frac{z}{z-a}$ and so the sequence $\left\{k a^{k}\right\}$ has Z transform

$$
\mathcal{Z}\left\{k x_{k}\right\}=-z F^{\prime}(z)=-z\left(\frac{z}{z-a}\right)^{\prime}=-z\left(\frac{z-a-z}{(z-a)^{2}}\right)=\frac{a z}{(z-a)^{2}}
$$

Notice that this is in agreement with the table of transforms.

Inverse Z transforms

If the sequence $\left\{x_{k}\right\}$ has \mathbb{Z} transform $\mathcal{Z}\left\{x_{k}\right\}=F(z)$, the inverse transform is defined as

$$
\mathcal{Z}^{-1} F(z)=\left\{x_{k}\right\}
$$

To carry out the inverse Z transform, we will usually need to perform some manipulation, the most often using the partial fraction decomposition.

Example 13:

The sequence $\left\{x_{k}\right\}$ has Z transform $F(z)=\frac{z}{z^{2}-5 z+6}$. We first perform the partial fraction decomposition

$$
F(z)=\frac{z}{z^{2}-5 z+6}=\frac{z}{(z-2)(z-3)}=\frac{A}{z-2}+\frac{B}{z-3}=\frac{A(z-3)+B(z-2)}{(z-2)(z-3)}
$$

Equating numerators and solving for A and B gives $A=-2$ and $B=3$. So

$$
F(z)=\frac{3}{z-3}-\frac{2}{z-2}
$$

The nearest Z transform in the table to either of these two partial fractions is $\mathcal{Z}\left\{a^{k}\right\}=$ $\frac{z}{z-a}$ so we write

$$
\begin{aligned}
F(z) & =\frac{3}{z-3}-\frac{2}{z-2}=\frac{3}{z} \times \frac{z}{z-3}-\frac{2}{z} \times \frac{z}{z-2} \\
& =3 \times z^{-1} \mathcal{Z}\left\{3^{k}\right\}-2 \times z^{-1} \mathcal{Z}\left\{2^{k}\right\}
\end{aligned}
$$

The inverse Z transform is then

$$
\begin{aligned}
\mathcal{Z}^{-1} F(z) & =3 \times\left\{3^{k-1}\right\}-2 \times\left\{2^{k-1}\right\} \\
& =\left\{3^{k}\right\}-\left\{2^{k}\right\} \\
& =\left\{3^{k}-2^{k}\right\}
\end{aligned}
$$

giving $x_{k}=3^{k}-2^{k}$.

We can solve this problem also without using the second shift theorem. We consider instead the partial fraction decomposition of $\frac{F(z)}{z}$:

$$
\begin{aligned}
\frac{F(z)}{z} & =\frac{1}{z} \times \frac{z}{z^{2}-5 z+6}=\frac{1}{z^{2}-5 z+6}=\frac{1}{(z-2)(z-3)} \\
& =\frac{A}{z-2}+\frac{B}{z-3}=\frac{A(z-3)+B(z-2)}{(z-2)(z-3)}
\end{aligned}
$$

Equating numerators and solving for A and B yields $A=-1$ and $B=1$, so that

$$
\frac{F(z)}{z}=\frac{1}{z-3}-\frac{1}{z-2} \quad \Rightarrow \quad F(z)=\frac{z}{z-3}-\frac{z}{z-2}=\mathcal{Z}\left\{3^{k}\right\}-\mathcal{Z}\left\{2^{k}\right\}
$$

The final result is

$$
\begin{aligned}
\mathcal{Z}^{-1} F(z) & =\left\{3^{k}\right\}-\left\{2^{k}\right\} \\
& =\left\{3^{k}-2^{k}\right\}
\end{aligned}
$$

Example 14:

The sequence $\left\{x_{k}\right\}$ has Z transform

$$
F(z)=\frac{5 z}{\left(z^{2}-4 z+4\right)(z+2)}
$$

We divide $F(z)$ by z and perform the partial fraction decomposition

$$
\begin{aligned}
\frac{F(z)}{z} & =\frac{1}{z} \times \frac{5 z}{\left(z^{2}-4 z+4\right)(z+2)}=\frac{5}{(z-2)^{2}(z+2)} \\
& =\frac{A}{(z-2)^{2}}+\frac{B}{z-2}+\frac{C}{z+2} \\
& =\frac{A(z+2)+B(z-2)(z+2)+C(z-2)^{2}}{(z-2)^{2}(z+2)}
\end{aligned}
$$

Equating numerators and solving for A, B and C yields $A=5 / 4, B=-5 / 16$ and $C=5 / 16$, so

$$
\frac{F(z)}{z}=\frac{5 / 4}{(z-2)^{2}}-\frac{5 / 16}{z-2}+\frac{5 / 16}{z+2}
$$

giving

$$
F(z)=\frac{5}{8} \times \frac{2 z}{(z-2)^{2}}-\frac{5}{16} \times \frac{z}{z-2}+\frac{5}{16} \times \frac{z}{z+2}
$$

The inverse Z transform is then

$$
\begin{aligned}
\mathcal{Z}^{-1} F(z) & =\frac{5}{8} \times\left\{k 2^{k}\right\}-\frac{5}{16} \times\left\{2^{k}\right\}+\frac{5}{16} \times\left\{(-2)^{k}\right\} \\
& =\left\{\frac{5}{16}\left[(2 k-1) 2^{k}+(-2)^{k}\right]\right\}
\end{aligned}
$$

