Maynooth University
National University of Ireland Maynooth

OLLSCOIL NA hÉIREANN MÁ NUAD THE NATIONAL UNIVERSITY OF IRELAND MAYNOOTH

BE in Electronic Engineering with Communications
BE in Electronic Engineering with Computers
BE in Electronic Engineering
BE in Robotics and Intelligent Devices

YEAR 1
Autumn Repeat Exam

2016-2017

Engineering Mathematics II
EE112

Dr. P. Watts

Time allowed: 2 hours
Answer Question 1 and any two others
Question 1 carries 50 marks and all others carry 25 marks each

1. This Question Is Compulsory

(a) [12 marks] If $\vec{a}=-4 \hat{\jmath}-2 \hat{k}, \vec{b}=\hat{\imath}-\hat{k}$ and $\vec{c}=2 \hat{\imath}+\hat{\jmath}+\hat{k}$, obtain the following:
(i) $\vec{a} \cdot \vec{b}$,
(ii) $\vec{c} \times \vec{b}$,
(iii) $[\hat{\jmath} \times(\vec{b} \times \hat{k})] \cdot \vec{a}$,
(iv) $2(\vec{c} \cdot \vec{a}) \hat{\jmath}+3 \vec{a}$.
(b) [3 marks] Find the point at which the line $\vec{r}(t)=(1+2 t) \hat{\imath}+2 t \hat{\jmath}-t \hat{k}$ (where t is a real number) and the plane $x-2 y+z=7$ intersect.
(c) [8 marks] Find the following Laplace transform and inverse Laplace transform:
(i) $L\left[e^{-2 t}\left(2 t^{2}+t\right)\right]$,
(ii) $L^{-1}\left[\frac{3 s-2}{s^{2}+9}\right]$.
(d) [8 marks] For the two matrices

$$
A=\left(\begin{array}{rr}
3 & 2 \\
-1 & 1
\end{array}\right), \quad B=\left(\begin{array}{rr}
5 & 0 \\
0 & -2 \\
-8 & 3
\end{array}\right)
$$

Find (i) $B A$, (ii) A^{T}, (iii) B^{T} and (iv) $A\left(B^{\mathrm{T}}\right)$.
(e) [6 marks] Find the determinant and trace of the matrix

$$
\left(\begin{array}{rrr}
5 & 0 & 1 \\
0 & 1 & 0 \\
2 & 7 & -3
\end{array}\right)
$$

(f) [6 marks] Solve the following system of simultaneous equations using the inverse matrix method:

$$
x+2 y=2, \quad-x+y=0
$$

(g) [7 marks] Find the characteristic equation for the matrix

$$
M=\left(\begin{array}{ll}
2 & -3 \\
1 & -2
\end{array}\right)
$$

and use it to compute M^{-1}.
2. (a) [10 marks] Solve the following differential equation using Laplace transforms:

$$
\frac{\mathrm{d} y}{\mathrm{~d} t}-2 y=3 \sinh (2 t)
$$

where $y(0)=0$.
(b) [15 marks] Find the eigenvalues of the matrix

$$
\left(\begin{array}{rrr}
4 & 0 & 6 \\
0 & -3 & 0 \\
4 & 0 & 2
\end{array}\right)
$$

and determine their associated eigenvectors.
3. (a) [10 marks] Find the line of intersection, expressed in parametric form, between the planes $x+y+z=1$ and $x-2 z=0$.
(b) [15 marks] Using any method you like, find the inverse of the matrix

$$
\left(\begin{array}{rrr}
1 & 2 & 5 \\
0 & -1 & 2 \\
2 & 4 & 9
\end{array}\right)
$$

4. (a) [12 marks] A particular circuit has three resistors such that the currents I_{1}, I_{2} and I_{3} passing through them satisfy the equations

$$
\begin{aligned}
2 I_{1}+I_{2} & =-4 \\
I_{1}-I_{2}+I_{3} & =0 \\
2 I_{1}-2 I_{3} & =8
\end{aligned}
$$

Find I_{1}, I_{2} and I_{3} using Gauss-Jordan elimination.
(b) [13 marks] Consider the curve is given by

$$
\vec{r}(t)=\sin ^{3}(t) \hat{\imath}-\cos ^{3}(t) \hat{k}
$$

for $0 \leq t \leq \pi / 2$. Find the total arc length of this curve.

USEFUL FORMULAE

Vectors

$$
\begin{aligned}
\qquad \vec{A} \times(\vec{B} \times \vec{C})= & (\vec{A} \cdot \vec{C}) \vec{B}-(\vec{A} \cdot \vec{B}) \vec{C} \\
\text { curvature: } & \kappa=\frac{\left|\frac{\mathrm{d} \hat{u}}{\mathrm{~d} t}\right|}{|\vec{u}|} \\
\text { principal unit normal vector: } & \hat{N}=\frac{\frac{\mathrm{d} \hat{\imath}}{\mathrm{~d} t}}{\left|\frac{\mathrm{~d} \hat{\imath}}{\mathrm{~d} t}\right|} \\
\text { arc length between } t_{1} \text { and } t_{2}: & s=\int_{t_{1}}^{t_{2}}|\vec{u}(t)| \mathrm{d} t
\end{aligned}
$$

Laplace Transforms

Table of Laplace Transforms

$f(t)=L^{-1}[F(s)]$	$F(s)=L[f(t)]$
t^{n}	$\frac{n!}{s^{n+1}}$
$e^{a t}$	$\frac{1}{s-a}$
$\cos (\omega t)$	$\frac{s}{s^{2}+\omega^{2}}$
$\sin (\omega t)$	$\frac{\omega}{s^{2}+\omega^{2}}$
$\cosh (a t)$	$\frac{2}{s^{2}-a^{2}}$
$\sinh (a t)$	$\frac{a}{s^{2}-a^{2}}$

Laplace Transform Theorems

$$
\begin{aligned}
L[a f(t)+b g(t)] & =a L[f(t)]+b L[g(t)], \\
L\left[e^{a t} f(t)\right] & =F(s-a), \\
L[f(a t)] & =\frac{1}{a} F\left(\frac{s}{a}\right), \\
L\left[f^{\prime}(t)\right] & =s F(s)-f(0), \\
L\left[f^{\prime \prime}(t)\right] & =s^{2} F(s)-s f(0)-f^{\prime}(0), \\
L\left[\int_{0}^{t} f(\tau) \mathrm{d} \tau\right] & =\frac{1}{s} F(s) .
\end{aligned}
$$

In all of the above, $n=0,1,2, \ldots$ and ω, a and b are constants.

