Maynooth University
National University of Ireland Maynooth

# OLLSCOIL NA hÉIREANN MÁ NUAD THE NATIONAL UNIVERSITY OF IRELAND MAYNOOTH 

BE in Electronic Engineering with Communications<br>BE in Electronic Engineering with Computers<br>BE in Electronic Engineering<br>BE in Robotics and Intelligent Devices

> YEAR 1
> SEMESTER 2
> $2017-2018$

Engineering Mathematics II
EE112

Dr. P. Watts

Time allowed: 2 hours
Answer Question 1 and any two others
Question 1 carries 50 marks and all others carry 25 marks each

## 1. This Question Is Compulsory

(a) Find the following Laplace transform and inverse Laplace transform:
(i) $L\left[e^{-t}\left(t+t^{3}\right)\right]$,
(ii) $L^{-1}\left[\frac{3-5 s}{s^{2}+4}\right]$.
[8 marks]
(b) If $\vec{a}=\hat{\imath}+\hat{k}, \vec{b}=-2 \hat{\imath}+\hat{\jmath}+3 \hat{k}$ and $\vec{c}=4 \hat{\imath}-2 \hat{k}$, obtain the following:
(i) $\vec{a} \cdot \vec{c}$,
(ii) $\vec{a} \times \vec{b}$,
(iii) $(\hat{\jmath} \times \vec{b}) \cdot(\vec{a} \times \hat{k})$,
(iv) $2(\vec{c} \cdot \vec{a}) \hat{\jmath}+3 \vec{a}$.
[12 marks]
(c) Find the point at which the plane $2 x-5 y+z=5$ and the line $\vec{r}(t)=(t+1) \hat{\imath}+(2 t+$ $1) \hat{\jmath}+(t+1) \hat{k}$ (where $t$ is a real number) intersect.
(d) Compute the curvature and principal unit normal vector for the curve $\vec{r}(t)=2 t^{2} \hat{\imath}-$ $2 \sin \left(t^{2}\right) \hat{\jmath}+2 \cos \left(t^{2}\right) \hat{k}$ for $t>0$.
[6 marks]
(e) For the two matrices

$$
A=\left(\begin{array}{rr}
12 & 0 \\
0 & -7 \\
5 & 3
\end{array}\right), \quad B=\left(\begin{array}{rr}
2 & 0 \\
-1 & 1
\end{array}\right)
$$

Find (i) $A^{\mathrm{T}}$, (ii) $B^{\mathrm{T}}$, (iii) $B\left(A^{\mathrm{T}}\right)$ and (iv) $(A B)^{\mathrm{T}}$.
[8 marks]
(f) Find the determinant and trace of the matrix

$$
\left(\begin{array}{rrr}
5 & -13 & 10 \\
0 & -2 & 1 \\
0 & 0 & 3
\end{array}\right)
$$

[6 marks]
(g) Solve the following system of simultaneous equations using Gauss-Jordan elimination:

$$
\begin{aligned}
2 x_{1}+x_{2} & =-2 \\
-9 x_{1}+3 x_{2} & =4
\end{aligned}
$$

2. (a) Solve the following differential equation using Laplace transforms:

$$
\frac{\mathrm{d} y}{\mathrm{~d} t}+3 y=-8 t e^{t}
$$

where $y(0)=0$.
[10 marks]
(b) Find the eigenvalues of the matrix

$$
\left(\begin{array}{rrr}
9 & 0 & 0 \\
0 & -3 & 1 \\
0 & 6 & 2
\end{array}\right)
$$

and determine their associated eigenvectors.
[15 marks]
3. (a) Find the line of intersection, expressed in vector form, between the planes $x+y-2 z=4$ and $x-y+2 z=-2$.
[10 marks]
(b) Using any method you like, find the inverse of the matrix

$$
\left(\begin{array}{rrr}
1 & -2 & 1 \\
2 & -2 & -1 \\
2 & -4 & 3
\end{array}\right)
$$

[15 marks]
4. (a) A particular circuit has three resistors such that the currents $I_{1}, I_{2}$ and $I_{3}$ passing through them satisfy the equations

$$
\begin{aligned}
-I_{1}+I_{2}+I_{3} & =-3 \\
2 I_{1}+4 I_{2}+I_{3} & =3 \\
2 I_{1}+I_{3} & =1
\end{aligned}
$$

Find $I_{1}, I_{2}$ and $I_{3}$ using Gauss-Jordan elimination.
[15 marks]
(b) Consider the curve given by

$$
\vec{r}(t)=6 t \hat{\jmath}-2 \cosh (3 t) \hat{k},
$$

for $0 \leq t \leq 1$. Find the total arc length of this curve.
[10 marks]

## USEFUL FORMULAE

## Laplace Transforms

Table of Laplace Transforms

| $f(t)=L^{-1}[F(s)]$ | $F(s)=L[f(t)]$ |
| :---: | :---: |
| $t^{n}$ | $\frac{n!}{s^{n+1}}$ |
| $e^{a t}$ | $\frac{1}{s-a}$ |
| $\cos (\omega t)$ | $\frac{s}{s^{2}+\omega^{2}}$ |
| $\sin (\omega t)$ | $\frac{\omega}{s^{2}+\omega^{2}}$ |
| $\cosh (a t)$ | $\frac{s}{s^{2}-a^{2}}$ |
| $\sinh (a t)$ | $\frac{a}{s^{2}-a^{2}}$ |

## Laplace Transform Theorems

$$
\begin{aligned}
L[a f(t)+b g(t)] & =a L[f(t)]+b L[g(t)], \\
L\left[e^{a t} f(t)\right] & =F(s-a), \\
L[f(a t)] & =\frac{1}{a} F\left(\frac{s}{a}\right), \\
L\left[f^{\prime}(t)\right] & =s F(s)-f(0), \\
L\left[f^{\prime \prime}(t)\right] & =s^{2} F(s)-s f(0)-f^{\prime}(0), \\
L\left[\int_{0}^{t} f(\tau) \mathrm{d} \tau\right] & =\frac{1}{s} F(s) .
\end{aligned}
$$

In all of the above, $n=0,1,2, \ldots$ and $\omega, a$ and $b$ are constants.

## Vectors \& Curves

vector triple product: $\quad \vec{A} \times(\vec{B} \times \vec{C})=(\vec{A} \cdot \vec{C}) \vec{B}-(\vec{A} \cdot \vec{B}) \vec{C}$
arc length of a curve between $t_{1}$ and $t_{2}: \quad S=\int_{t_{1}}^{t_{2}}|\vec{u}(t)| \mathrm{d} t$
curvature of a curve: $\quad \kappa=\frac{\left|\frac{\mathrm{d} \hat{u}}{\mathrm{~d} t}\right|}{|\vec{u}|}$
principal unit normal vector of a curve: $\quad \hat{N}=\frac{\frac{\mathrm{d} \hat{u}}{\mathrm{~d} t}}{\left|\frac{\mathrm{~d} \hat{u}}{\mathrm{~d} t}\right|}$

