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1. This Question Is Compulsory

(a) [12 marks] If ~a = ı̂− k̂, ~b = 2ı̂+ ̂+ k̂ and ~c = −4̂− 2k̂, obtain the following:

(i) ~a ·~b,
(ii) ~c×~b,
(iii) [̂× (~b× k̂)] · ~a,
(iv) 2(~c · ~a)̂+ 3~a.

(b) [3 marks] Find the point at which the plane 2x − y + z = 5 and the line ~r(t) = (3 +
2t)̂ı− 2t̂+ tk̂ (where t is a real number) intersect.

(c) [8 marks] Find the following Laplace transform and inverse Laplace transform:

(i) L
[
et
(
t2 − 3

)]
,

(ii) L−1
[
s+ 1

s2 − 4

]
.

(d) [6 marks] Compute the curvature and principal unit normal vector for the curve ~r(t) =
2 sin(3t)̂ı+ 8t̂− 2 cos(3t)k̂.

(e) [8 marks] For the two matrices

A =

 5 0
0 −1
−8 3

 , B =

(
2 2
−1 1

)
,

Find (i) AB, (ii) AT, (iii) BT and (iv) (AB)T.

(f) [6 marks] Find the determinant and trace of the matrix 5 0 0
0 1 0
2 7 −3

 .

(g) [7 marks] Solve the following system of simultaneous equations using Gauss-Jordan elim-
ination:

x+ 2y + 2z = 2,

x+ y + z = 0,

x− 3y − z = 0.
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2. (a) [9 marks] Consider the following matrix A and its eigenvectors K1, K2 and K3:

A =

 −2 2 −3
2 1 −6
−1 −2 0

 , K1 =

 1
2
−1

 , K2 =

 −2
1
0

 , K3 =

 3
0
1

 .

Find the eigenvalues of A.

(b) [16 marks] Solve the following differential equation using Laplace transforms:

−2
d2y

dt2
+ 2y = −1− e3t

where y(0) = y′(0) = 5.

3. (a) [10 marks] Find the line of intersection, expressed in vector form, between the planes
x+ y + z = 1 and x− y + 2z = 0.

(b) [15 marks] Using any method you like, find the inverse of the matrix 19 2 −9
−4 −1 2
−2 0 1

 .

4. (a) [12 marks] A particular circuit has three resistors such that the currents I1, I2 and I3
passing through them satisfy the equations

0.5I1 − I2 = 2,

I1 + I2 + I3 = 0,

0.5I1 − 3I3 = 4.

Find I1, I2 and I3.

(b) [13 marks] Find the characteristic equation for the matrix

M =

(
2 −4
1 −3

)
.

and use it to compute M2 and M−1.
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USEFUL FORMULAE

Vectors

~A×
(
~B × ~C

)
=

(
~A · ~C

)
~B −

(
~A · ~B

)
~C

curvature: κ =

∣∣dû
dt

∣∣
|~u|

principal unit normal vector: N̂ =
dû
dt∣∣dû
dt

∣∣
Laplace Transforms

Table of Laplace Transforms

f(t) = L−1[F (s)] F (s) = L[f(t)]

tn n!
sn+1

eat 1
s−a

cos(ωt) s
s2+ω2

sin(ωt) ω
s2+ω2

cosh(at) s
s2−a2

sinh(at) a
s2−a2

Laplace Transform Theorems

L [af(t) + bg(t)] = aL [f(t)] + bL [g(t)] ,

L
[
eatf(t)

]
= F (s− a),

L [f(at)] =
1

a
F
(s
a

)
,

L [f ′(t)] = sF (s)− f(0),

L [f ′′(t)] = s2F (s)− sf(0)− f ′(0),

L

[∫ t

0

f(τ) dτ

]
=

1

s
F (s).

In all of the above, n = 0, 1, 2, . . . and ω, a and b are constants.
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