Maynooth University
National University of Ireland Maynooth

OLLSCOIL NA hÉIREANN MÁ NUAD THE NATIONAL UNIVERSITY OF IRELAND MAYNOOTH

BE in Electronic Engineering with Communications
BE in Electronic Engineering with Computers
BE in Electronic Engineering
BE in Robotics and Intelligent Devices

> YEAR 1
> SEMESTER 2
> $2016-2017$

Engineering Mathematics II

EE112

Dr. P. Watts

Time allowed: 2 hours
Answer Question 1 and any two others
Question 1 carries 50 marks and all others carry 25 marks each

1. This Question Is Compulsory

(a) [12 marks] If $\vec{a}=\hat{\imath}-\hat{k}, \vec{b}=2 \hat{\imath}+\hat{\jmath}+\hat{k}$ and $\vec{c}=-4 \hat{\jmath}-2 \hat{k}$, obtain the following:

$$
\begin{aligned}
\text { (i) } & \vec{a} \cdot \vec{b}, \\
\text { (ii) } & \vec{c} \times \vec{b}, \\
\text { (iii) } & {[\hat{\jmath} \times(\vec{b} \times \hat{k})] \cdot \vec{a}, } \\
\text { (iv) } & 2(\vec{c} \cdot \vec{a}) \hat{\jmath}+3 \vec{a} .
\end{aligned}
$$

(b) [3 marks] Find the point at which the plane $2 x-y+z=5$ and the line $\vec{r}(t)=(3+$ $2 t) \hat{\imath}-2 t \hat{\jmath}+t \hat{k}$ (where t is a real number) intersect.
(c) [8 marks] Find the following Laplace transform and inverse Laplace transform:
(i) $L\left[e^{t}\left(t^{2}-3\right)\right]$,
(ii) $L^{-1}\left[\frac{s+1}{s^{2}-4}\right]$.
(d) [6 marks] Compute the curvature and principal unit normal vector for the curve $\vec{r}(t)=$ $2 \sin (3 t) \hat{\imath}+8 t \hat{\jmath}-2 \cos (3 t) \hat{k}$.
(e) [8 marks] For the two matrices

$$
A=\left(\begin{array}{cc}
5 & 0 \\
0 & -1 \\
-8 & 3
\end{array}\right), \quad B=\left(\begin{array}{cc}
2 & 2 \\
-1 & 1
\end{array}\right)
$$

Find (i) $A B$, (ii) A^{T}, (iii) B^{T} and (iv) $(A B)^{\mathrm{T}}$.
(f) [6 marks] Find the determinant and trace of the matrix

$$
\left(\begin{array}{ccc}
5 & 0 & 0 \\
0 & 1 & 0 \\
2 & 7 & -3
\end{array}\right)
$$

(g) [7 marks] Solve the following system of simultaneous equations using Gauss-Jordan elimination:

$$
\begin{array}{r}
x+2 y+2 z=2 \\
x+y+z=0 \\
x-3 y-z=0
\end{array}
$$

2. (a) [$\mathbf{9}$ marks] Consider the following matrix A and its eigenvectors K_{1}, K_{2} and K_{3} :

$$
A=\left(\begin{array}{ccc}
-2 & 2 & -3 \\
2 & 1 & -6 \\
-1 & -2 & 0
\end{array}\right), \quad K_{1}=\left(\begin{array}{c}
1 \\
2 \\
-1
\end{array}\right), K_{2}=\left(\begin{array}{c}
-2 \\
1 \\
0
\end{array}\right), K_{3}=\left(\begin{array}{l}
3 \\
0 \\
1
\end{array}\right)
$$

Find the eigenvalues of A.
(b) [16 marks] Solve the following differential equation using Laplace transforms:

$$
-2 \frac{\mathrm{~d}^{2} y}{\mathrm{~d} t^{2}}+2 y=-1-e^{3 t}
$$

where $y(0)=y^{\prime}(0)=5$.
3. (a) [10 marks] Find the line of intersection, expressed in vector form, between the planes $x+y+z=1$ and $x-y+2 z=0$.
(b) [15 marks] Using any method you like, find the inverse of the matrix

$$
\left(\begin{array}{ccc}
19 & 2 & -9 \\
-4 & -1 & 2 \\
-2 & 0 & 1
\end{array}\right)
$$

4. (a) [12 marks] A particular circuit has three resistors such that the currents I_{1}, I_{2} and I_{3} passing through them satisfy the equations

$$
\begin{array}{r}
0.5 I_{1}-I_{2}=2 \\
I_{1}+I_{2}+I_{3}=0 \\
0.5 I_{1}-3 I_{3}=4
\end{array}
$$

Find I_{1}, I_{2} and I_{3}.
(b) [13 marks] Find the characteristic equation for the matrix

$$
M=\left(\begin{array}{ll}
2 & -4 \\
1 & -3
\end{array}\right)
$$

and use it to compute M^{2} and M^{-1}.

USEFUL FORMULAE

Vectors

$$
\begin{aligned}
\qquad \vec{A} \times(\vec{B} \times \vec{C})= & (\vec{A} \cdot \vec{C}) \vec{B}-(\vec{A} \cdot \vec{B}) \vec{C} \\
\text { curvature: } & \kappa=\frac{\left|\frac{\mathrm{d} \hat{u} t}{\mathrm{~d} t}\right|}{|\vec{u}|} \\
\text { principal unit normal vector: } & \hat{N}=\frac{\frac{\mathrm{d} \hat{\imath}}{\mathrm{~d} t}}{\left|\frac{\mathrm{~d} \hat{\imath}}{\mathrm{~d} t}\right|}
\end{aligned}
$$

Laplace Transforms

Table of Laplace Transforms

$f(t)=L^{-1}[F(s)]$	$F(s)=L[f(t)]$
t^{n}	$\frac{n!}{s^{n+1}}$
$e^{a t}$	$\frac{1}{s-a}$
$\cos (\omega t)$	$\frac{s}{s^{2}+\omega^{2}}$
$\sin (\omega t)$	$\frac{\omega}{s^{2}+\omega^{2}}$
$\cosh (a t)$	$\frac{2}{s^{2}-a^{2}}$
$\sinh (a t)$	$\frac{a}{s^{2}-a^{2}}$

Laplace Transform Theorems

$$
\begin{aligned}
L[a f(t)+b g(t)] & =a L[f(t)]+b L[g(t)], \\
L\left[e^{a t} f(t)\right] & =F(s-a), \\
L[f(a t)] & =\frac{1}{a} F\left(\frac{s}{a}\right), \\
L\left[f^{\prime}(t)\right] & =s F(s)-f(0), \\
L\left[f^{\prime \prime}(t)\right] & =s^{2} F(s)-s f(0)-f^{\prime}(0), \\
L\left[\int_{0}^{t} f(\tau) \mathrm{d} \tau\right] & =\frac{1}{s} F(s) .
\end{aligned}
$$

In all of the above, $n=0,1,2, \ldots$ and ω, a and b are constants.

