EE112 - Engineering Mathematics II

Problem Set 9

Due by 5pm on Friday, 20 April 2018

1. Identify the following matrices as symmetric, antisymmetric, hermitian, antihermitian, diagonal, upper-triangular, lower-triangular or none of these. (Note: list all that apply; for example, since the matrix

$$
M=\left(\begin{array}{ccc}
1 & 0 & -3 \\
0 & 2 & -2 \\
-3 & -2 & 0
\end{array}\right)
$$

satisfies both $M^{\mathrm{T}}=M$ and $M^{\mathrm{T}}=M^{*}$, you would identify it as both symmetric and hermitian.)
(i) $\left(\begin{array}{cc}1 & 1-i \\ 1+i & i\end{array}\right)$
(ii) $\left(\begin{array}{ccc}0 & 0 & 0 \\ 0 & -2 & 0 \\ 1 & 6 i & i\end{array}\right)$
(iii) $\left(\begin{array}{lll}9 & 8 & 7 \\ 6 & 5 & 4 \\ 3 & 2 & 1\end{array}\right)$
(iv) $\left(\begin{array}{cc}i & 2 i \\ 2 i & 2 i\end{array}\right)$
(v) $\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$
(vi) $\left(\begin{array}{ccc}-1 & 1 & -7 \\ 1 & 4 & -5 i \\ 7 & 5 i & 2\end{array}\right)$
2. The cyclicity property of the trace says that, for any two $m \times m$ matrices A and $B, \operatorname{tr}(A B)=\operatorname{tr}(B A)$. This does not mean that $\operatorname{tr}(A B)=$ $(\operatorname{tr}(A))(\operatorname{tr}(B))$, as we now show:
(a) Let A and B be the 3×3 matrices given above in Problem 1(ii) and Problem 1(vi). Compute $\operatorname{tr}(A B)$ and $\operatorname{tr}(B A)$ and show that they are equal.
(b) Compute $\operatorname{tr}(A)$ and $\operatorname{tr}(B)$ and show that their product $(\operatorname{tr}(A))(\operatorname{tr}(B))$ is not equal to $\operatorname{tr}(A B)$
3. Compute the determinant of each of the matrices in Problem 1.

