EE112 - Engineering Mathematics II

Problem Set 8

Due by 5pm on Friday, 13 April 2018

1. Comsider the following matrices:

$$
A=\left(\begin{array}{ll}
7 & -1
\end{array}\right), B=\left(\begin{array}{rr}
8 & -6 \\
1 & 4
\end{array}\right), \quad C=\left(\begin{array}{rrr}
8 & 0 & -4 \\
1 & 1 & 1
\end{array}\right), D=\binom{1}{-3} .
$$

State if each of the following mathematical expressions makes sense according to the rules of matrix algebra. For those that do, compute them.
(i) $2 A-B$,
(ii) $B C$,
(iii) $D A-2 B$;
(iv) C^{2}.
2. If x and y are numbers, we know that $(x+y)^{2}=x^{2}+2 x y+y^{2}$. However, this formula does not hold for matrices due to the fact that matrix multiplication is not commutative. Here we derive the correct formula.
(a) If A and B are two square matrices, show that $(A+B)^{2}=A^{2}+$ $A B+B A+B^{2}$.
(b) Confirm the above formula works for the matrices

$$
A=\left(\begin{array}{ccc}
0 & -1 & 0 \\
2 & 0 & 1 \\
1 & 0 & 3
\end{array}\right), \quad B=\left(\begin{array}{ccc}
1 & 1 & 0 \\
1 & -4 & -1 \\
2 & 2 & -2
\end{array}\right)
$$

in the following way:
(i) First, compute the sum $A+B$ and then square it to get $(A+B)^{2}$.
(ii) Now, compute $A^{2}, A B, B A$ and B^{2} separately.
(iii) Finally, compute $A^{2}+A B+B A+B^{2}$ and confirm it's the same as (i).
3. Now take the two matrices in previous problem and compute both $A^{2}+$ $2 A B+B^{2}$ and $A^{2}+2 B A+B^{2}$. Show that not only are they different from each other, but neither one is the matrix $(A+B)^{2}$ you computed in Problem 2. This illustrates the importance of remembering that matrix multiplication is not commutative.

