EE112 - Engineering Mathematics II

Problem Set 7

Due by 5pm on Friday, 6 April 2018

1. Find the tangent vector $\vec{u}(t)$ and unit tangent vector $\hat{u}(t)$ for each of the following parametrised curves:
(a) $\vec{r}(t)=-\left(2+t^{2}\right) \hat{\imath}-t^{2} \hat{\jmath}+\left(6+t^{2}\right) \hat{k}$ for $0 \leq t \leq 1$.
(b) $x(t)=1-t, y(t)=1+t, z(t)=t^{2}+1$ for $t \in \mathbb{R}$.
(c) $\vec{r}(t)=t e^{-2 t}(\hat{\imath}-\hat{\jmath})+2 t^{3} \hat{k}$ for $t \geq 0$.
2. If a curve \mathcal{C} is parametrised by $\vec{r}(t)$ for $t \in\left[t_{1}, t_{2}\right]$, then the total arc length of the curve is

$$
S=\int_{t_{1}}^{t_{2}}\left|\frac{\mathrm{~d} \vec{r}}{\mathrm{~d} t}(t)\right| \mathrm{d} t .
$$

Suppose \mathcal{C} is the lower half of a circle of radius A.
(a) Using only what you know from elementary geometry, predict what value of S the above integral should give.
(b) Now we parametrise the semicircle by

$$
\vec{r}(t)=A \cos (\sqrt{t}) \hat{\imath}+A \sin (\sqrt{t}) \hat{\jmath}
$$

where t goes from π^{2} to $4 \pi^{2}$. Compute the arc length of this semicircle using the integral formula above and comment on how it agrees or disagrees with (a).
3. (a) Find the curvature $\kappa(t)$ and principal unit normal vector $\hat{N}(t)$ for the curve given in Problem 1(b).
(b) Show that κ reaches its maximum value at the point $(1,1,1)$.

