EE112 - Engineering Mathematics II

Problem Set 6

Due by 5pm on Friday, 16 March 2018

1. Each of the following pairs of points defines a line. For each case, find an equation for the line in vector form, parametric form and symmetric form.
(a) Line 1 contains $(1,2,0)$ and $(-1,1,2)$.
(b) Line 2 contains $(3,1,-2)$ and the origin.
(c) Line 3 contains $(0,-0.5,0)$ and $(1,1,1.5)$.
2. (a) Given the information below, find the equations for the following two planes:
(i) Plane 1 contains the origin, $(3,2,1)$ and $(1,1,-1)$.
(ii) Plane 2 is normal to the vector $2 \hat{\imath}-5 \hat{\jmath}+3 \hat{k}$ and contains the point $(-1,0,4)$.
(b) Determine if either Plane 1 or Plane 2 (or both) contains the point (3, -2, -2).
3. Plane 3 and Plane 4 are given, respectively, by the equations $-x+2 y-z=$ 0 and $y-z=1$.
(a) Find the parametric form of the line which is perpendicular to Plane 4 and contains the point $(0,-1,0)$, and then determine where that line intersects Plane 3.
(b) Find the equation for the line of intersection between Plane 3 and Plane 4, expressed in whichever form you like (i.e vector, parametric or symmetric).
