## **EE112** – Engineering Mathematics II

## Problem Set 4

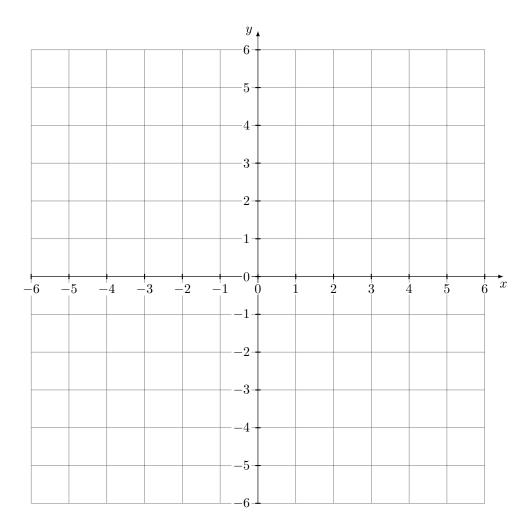
Due by 5pm on Monday, 5 March 2018

1. The following three vectors are all in  $\mathbb{R}^2$ :

$$\vec{A} = 3\hat{\imath} - 2\hat{\jmath}, \quad \vec{B} = -3\hat{\imath} + 4\hat{\jmath}, \quad \vec{C} = 5\hat{\imath}$$

Sketch and label all three of these vectors on the appended coordinate grid (and submit it with the rest of this Problem Set) such that the foot of  $\vec{A}$  is at the origin, the foot of  $\vec{B}$  is at the point (-1, 1) and the head of  $\vec{C}$  is at the point (2, 0).

- 2. For the three vectors in Problem 1, compute the following:
  - (a)  $\vec{A} + \vec{B}$ ,  $-\vec{A} \vec{B} + 3\vec{C}$  and  $-12\vec{B}$ ;
  - (b) The magnitude and direction angle (relative to the positive x-axis, as usual) of  $-\vec{C} \vec{A}$ ;
  - (c) The dot product  $-2\vec{B}\cdot\vec{A}$ ;
  - (d) The angle between  $\vec{A}$  and  $\vec{C}$ .
- 3. Consider the following  $\mathbb{R}^3$  vector:


$$\vec{u} = -\hat{\imath} + 7\hat{\jmath} - 2\hat{k}.$$

- (a) Find the magnitude of  $\vec{u}$ .
- (b) Determine the angles  $\vec{u}$  makes with the positive *x*-axis, the positive *y*-axis and the positive *z*-axis when its foot is at the origin.
- (c) Find the value of  $\alpha$  such that the vector

$$\vec{w} = \hat{\imath} + \alpha \hat{\jmath} - 2\hat{k}$$

is perpendicular to  $\vec{u}$ .

(d) Compute  $\vec{u} \times \hat{j}$ .

