EE112 - Engineering Mathematics II

Problem Set 4

Due by 5pm on Monday, 5 March 2018

1. The following three vectors are all in \mathbb{R}^{2} :

$$
\vec{A}=3 \hat{\imath}-2 \hat{\jmath}, \quad \vec{B}=-3 \hat{\imath}+4 \hat{\jmath}, \quad \vec{C}=5 \hat{\imath}
$$

Sketch and label all three of these vectors on the appended coordinate grid (and submit it with the rest of this Problem Set) such that the foot of \vec{A} is at the origin, the foot of \vec{B} is at the point $(-1,1)$ and the head of \vec{C} is at the point $(2,0)$.
2. For the three vectors in Problem 1, compute the following:
(a) $\vec{A}+\vec{B},-\vec{A}-\vec{B}+3 \vec{C}$ and $-12 \vec{B}$;
(b) The magnitude and direction angle (relative to the positive x-axis, as usual) of $-\vec{C}-\vec{A}$;
(c) The dot product $-2 \vec{B} \cdot \vec{A}$;
(d) The angle between \vec{A} and \vec{C}.
3. Consider the following \mathbb{R}^{3} vector:

$$
\vec{u}=-\hat{\imath}+7 \hat{\jmath}-2 \hat{k} .
$$

(a) Find the magnitude of \vec{u}.
(b) Determine the angles \vec{u} makes with the positive x-axis, the positive y-axis and the positive z-axis when its foot is at the origin.
(c) Find the value of α such that the vector

$$
\vec{w}=\hat{\imath}+\alpha \hat{\jmath}-2 \hat{k}
$$

is perpendicular to \vec{u}.
(d) Compute $\vec{u} \times \hat{\jmath}$.

