EE112 – Engineering Mathematics II

Problem Set 2

Due by 5pm on Friday, 16 February 2018

1. In this problem, we want to use the partial fraction expansion method to show that

$$L^{-1}\left[\frac{12}{s\left(s^2-8s+12\right)}\right] = 1 - \frac{3}{2}e^{2t} + \frac{1}{2}e^{6t}.$$

(a) Since $s(s^2 - 8s + 12) = s(s - 2)(s - 6)$, then there must be constants A_1 , A_2 and A_3 giving the partial fraction expansion

$$\frac{12}{s(s^2 - 8s + 12)} = \frac{A_1}{s} + \frac{A_2}{s - 2} + \frac{A_3}{s - 6}.$$

Find A_1 , A_2 and A_3 .

- (b) Find the inverse Laplace Transform (LT) of the partial fraction expansion in (a) and thus confirm the above.
- 2. Find the inverse LTs of the following functions:

(a)
$$\frac{7}{s^4}$$
,
(b) $\frac{1}{s} - \frac{2}{(s+3)^2 - 9}$,
(c) $\frac{s-5}{s^2 + 4s + 20}$,
(d) $\frac{s^2 - 1}{s(s+2)(s-3)}$.

3. Suppose a function y(t) satisfies the differential equation

$$-2\frac{\mathrm{d}y}{\mathrm{d}t} + 10y = 4e^{-t} + 2$$

and the initial condition y(0) = 0.

- (a) Use LTs to find y(t).
- (b) Confirm that your answer to (a) satisfies both the differential equation and the initial condition.

Table of Laplace Transforms

$f(t) = L^{-1}[F(s)]$	F(s) = L[f(t)]
t^n	$\frac{n!}{s^{n+1}}$
e^{at}	$\frac{1}{s-a}$
$\cos(\omega t)$	$\frac{s}{s^2+\omega^2}$
$\sin(\omega t)$	$\frac{\omega}{s^2 + \omega^2}$
$\cosh(at)$	$\frac{s}{s^2-a^2}$
$\sinh(at)$	$\frac{a}{s^2-a^2}$

Laplace Transform Theorems

$$\begin{split} L\left[af(t) + bg(t)\right] &= aL\left[f(t)\right] + bL\left[g(t)\right], \\ L\left[e^{at}f(t)\right] &= F(s-a), \\ L\left[f(at)\right] &= \frac{1}{a}F\left(\frac{s}{a}\right), \\ L\left[f'(t)\right] &= sF(s) - f(0), \\ L\left[f''(t)\right] &= s^2F(s) - sf(0) - f'(0), \\ L\left[\int_0^t f(\tau) \,\mathrm{d}\tau\right] &= \frac{1}{s}F(s). \end{split}$$

In all of the above, $n = 0, 1, 2, \ldots$ and ω , a and b are constants.