EE112 - Engineering Mathematics II

Problem Set 2

Due by 5pm on Friday, 16 February 2018

1. In this problem, we want to use the partial fraction expansion method to show that

$$
L^{-1}\left[\frac{12}{s\left(s^{2}-8 s+12\right)}\right]=1-\frac{3}{2} e^{2 t}+\frac{1}{2} e^{6 t}
$$

(a) Since $s\left(s^{2}-8 s+12\right)=s(s-2)(s-6)$, then there must be constants A_{1}, A_{2} and A_{3} giving the partial fraction expansion

$$
\frac{12}{s\left(s^{2}-8 s+12\right)}=\frac{A_{1}}{s}+\frac{A_{2}}{s-2}+\frac{A_{3}}{s-6} .
$$

Find A_{1}, A_{2} and A_{3}.
(b) Find the inverse Laplace Transform (LT) of the partial fraction expansion in (a) and thus confirm the above.
2. Find the inverse LTs of the following functions:
(a) $\frac{7}{s^{4}}$,
(b) $\frac{1}{s}-\frac{2}{(s+3)^{2}-9}$,
(c) $\frac{s-5}{s^{2}+4 s+20}$,
(d) $\frac{s^{2}-1}{s(s+2)(s-3)}$.
3. Suppose a function $y(t)$ satisfies the differential equation

$$
-2 \frac{\mathrm{~d} y}{\mathrm{~d} t}+10 y=4 e^{-t}+2
$$

and the initial condition $y(0)=0$.
(a) Use LTs to find $y(t)$.
(b) Confirm that your answer to (a) satisfies both the differential equation and the initial condition.

Table of Laplace Transforms

$f(t)=L^{-1}[F(s)]$	$F(s)=L[f(t)]$
t^{n}	$\frac{n!}{s^{n+1}}$
$e^{a t}$	$\frac{1}{s-a}$
$\cos (\omega t)$	$\frac{s}{s^{2}+\omega^{2}}$
$\sin (\omega t)$	$\frac{\omega}{s^{2}+\omega^{2}}$
$\cosh (a t)$	$\frac{2}{s^{2}-a^{2}}$
$\sinh (a t)$	$\frac{a}{s^{2}-a^{2}}$

Laplace Transform Theorems

$$
\begin{aligned}
L[a f(t)+b g(t)] & =a L[f(t)]+b L[g(t)], \\
L\left[e^{a t} f(t)\right] & =F(s-a), \\
L[f(a t)] & =\frac{1}{a} F\left(\frac{s}{a}\right), \\
L\left[f^{\prime}(t)\right] & =s F(s)-f(0), \\
L\left[f^{\prime \prime}(t)\right] & =s^{2} F(s)-s f(0)-f^{\prime}(0), \\
L\left[\int_{0}^{t} f(\tau) \mathrm{d} \tau\right] & =\frac{1}{s} F(s) .
\end{aligned}
$$

In all of the above, $n=0,1,2, \ldots$ and ω, a and b are constants.

