EE112 - Engineering Mathematics II

Problem Set 1

Due by 5pm on Friday, 9 February 2018

1. Show that the Laplace transforms (LTs) of $\cosh (a t)$ and $\sin (\omega t)$, where a and ω are positive constants, are

$$
L[\cosh (a t)]=\frac{s}{s^{2}-a^{2}}, \quad L[\sin (\omega t)]=\frac{\omega}{s^{2}+\omega^{2}} .
$$

2. Find the LT of the function $f(t)$ given by

$$
f(t)= \begin{cases}-2 & \text { for } 0 \leq t \leq 1 \\ 0 & \text { for } t>1\end{cases}
$$

3. Find the LTs of the following functions:
(a) $-t^{3}+2 \sin (4 t)+2 \cosh (2 t)$;
(b) $e^{-t} \cos (t)+2 t$;
(c) $(2 t-1)^{2}$;
(d) $t \cosh (2 t)$;
(e) $\sin ^{2}(t)$;
(f) $\sin (a t+b)$, where a and b are constants.
(Hint for (d): remember that $\cosh (x)=\left(e^{x}+e^{-x}\right) / 2$.)

Table of Laplace Transforms

$f(t)$	$F(s)=L[f(t)]$
t^{n}	$\frac{n!}{s^{n+1}}$
$e^{a t}$	$\frac{1}{s-a}$
$\cos (\omega t)$	$\frac{s}{s^{2}+\omega^{2}}$
$\sin (\omega t)$	$\frac{\omega}{s^{2}+\omega^{2}}$
$\cosh (a t)$	$\frac{s^{2}-a^{2}}{s^{2}-a^{2}}$
$\sinh (a t)$	$\frac{a}{s^{2}-a^{2}}$

Laplace Transform Theorems

$$
\begin{aligned}
L[a f(t)+b g(t)] & =a L[f(t)]+b L[g(t)] \\
L\left[e^{a t} f(t)\right] & =F(s-a) \\
L[f(a t)] & =\frac{1}{a} F\left(\frac{s}{a}\right), \\
L\left[f^{\prime}(t)\right] & =s F(s)-f(0), \\
L\left[f^{\prime \prime}(t)\right] & =s^{2} F(s)-s f(0)-f^{\prime}(0), \\
L\left[\int_{0}^{t} f(\tau) \mathrm{d} \tau\right] & =\frac{1}{s} F(s)
\end{aligned}
$$

In all of the above, $n=0,1,2, \ldots$ and ω, a and b are constants.

