9 Solving Linear Systems of Equations

An equation of the form $a x+b y=c$ where a, b and c are real numbers (e.g. $2 x+5 y=3$) is said to be a linear equation in the variables x and y.

For real numbers a, b, c and d, the equation $a x+b y+c z=d$ is a linear equation in the variable x, y, z and is the equation of a plane.

In general, any equation of the form

$$
a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{n} x_{n}=b
$$

where $a_{1}, a_{2}, \ldots, a_{n}$ and b are real numbers is a linear equation in the n variables $x_{1}, x_{2}, \ldots, x_{n}$.
We will examine various techniques to solve systems of linear equations.
For example, consider the following system of two linear equations

$$
\begin{aligned}
& 2 x+3 y=2 \\
& 3 x+4 y=4
\end{aligned}
$$

Finding a solution to this system of equations means we are looking for values of x and y which simultaneously satisfy both of the above linear equations. The values $x=4$ and $y=-2$ satisfies the system and together constitute a solution to our system of equations.

9.1 Linear Systems in Matrix Form

Any linear system of equations can be expressed in the form of a matrix equation. For example, consider the matrix equation

$$
\left(\begin{array}{ll}
2 & 3 \tag{9.1.1}\\
3 & 4
\end{array}\right)\binom{x}{y}=\binom{2}{4}
$$

performing the multiplication on the left-hand side of (9.1.1) yields

$$
\binom{2 x+3 y}{3 x+4 y}=\binom{2}{4}
$$

which we can read as

$$
\begin{align*}
& 2 x+3 y=2 \\
& 3 x+4 y=4 \tag{9.1.2}
\end{align*}
$$

The linear system (9.1.2) can thus be written in the form (9.1.1), i.e, as a matrix equation

$$
A x=B
$$

where

$$
\begin{array}{ll}
\mathbf{A}=\left(\begin{array}{ll}
2 & 3 \\
3 & 4
\end{array}\right) & \text { is the variable coefficient matrix } \\
\mathbf{x}=\binom{x}{y} & \text { holds the system variables } \\
\mathbf{B}=\binom{2}{4} & \text { holds the constants of the system. }
\end{array}
$$

In general, any system of m linear equations in n unknowns, $x_{1}, x_{2}, \ldots, x_{n}$

$$
\begin{gathered}
a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n}=b_{1} \\
a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n}=b_{2} \\
\vdots \\
a_{m 1} x_{1}+a_{m 2} x_{2}+\cdots+a_{m n} x_{n}=b_{m}
\end{gathered}
$$

can be written compactly as a matrix equation

$$
A x=B
$$

where

$$
\mathbf{A}=\left(\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
\vdots & & & \vdots \\
a_{m 1} & a_{m 2} & \ldots & a_{m n}
\end{array}\right), \quad \mathbf{x}=\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right) \quad \text { and } \quad \mathbf{B}=\left(\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{n}
\end{array}\right)
$$

9.2 Using an inverse matrix to solve a linear system

We have seen that a linear system of n equations in n unknowns

$$
\begin{gathered}
a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n}=b_{1} \\
a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n}=b_{2} \\
\vdots \\
a_{n 1} x_{1}+a_{n 2} x_{2}+\cdots+a_{n n} x_{n}=b_{n}
\end{gathered}
$$

can be written as a matrix equation

$$
A x=B
$$

with

$$
\mathbf{A}=\left(\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
\vdots & & & \vdots \\
a_{n 1} & a_{n 2} & \ldots & a_{n n}
\end{array}\right), \quad \mathbf{x}=\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right) \quad \text { and } \quad \mathbf{B}=\left(\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{n}
\end{array}\right)
$$

If we have the linear equations then we will know what the matrices \mathbf{A} and \mathbf{B} are, our aim is to find the value of the variables that compose \mathbf{x}. We can find the values of \mathbf{x} by multiplying both sides of our matrix equation $\mathbf{A x}=\mathbf{B}$ by \mathbf{A}^{-1} which yields

$$
\begin{aligned}
\mathbf{A}^{-1}(\mathbf{A x}) & =\mathbf{A}^{-1} \mathbf{B} \\
\left(\mathbf{A}^{-1} \mathbf{A}\right) \mathbf{x} & =\mathbf{A}^{-1} \mathbf{B} \quad \text { and as } \mathbf{A}^{-1} \mathbf{A}=\mathbf{I} \\
\mathbf{I x} & =\mathbf{A}^{-1} \mathbf{B}
\end{aligned}
$$

which brings us the solution to our linear system of equations
Given a system of linear equations $\mathbf{A x}=\mathbf{B}$ and provided that \mathbf{A}^{-1} exists them

$$
\mathbf{x}=\mathbf{A}^{-1} \mathbf{B}
$$

Example 9.2.1 (Solution to a linear system with an inverse (2×2)).
Find the solution to the following linear system

$$
\begin{aligned}
& 2 x-9 y=15 \\
& 4 x+6 y=16
\end{aligned}
$$

using an inverse matrix.

Solution:

Writing the system in matrix form we have

$$
\underbrace{\left(\begin{array}{cc}
2 & -9 \\
3 & 6
\end{array}\right)}_{\mathbf{A}} \underbrace{\binom{x}{y}}_{\mathbf{x}}=\underbrace{\binom{15}{16}}_{\mathbf{B}}
$$

We require the inverse of the coefficient matrix \mathbf{A}

$$
\mathbf{A}^{-1}=\frac{1}{\operatorname{det} \mathbf{A}} \operatorname{adj} \mathbf{A}
$$

which we can show (you should do this as an exercise) to be

$$
\mathbf{A}^{-1}=\frac{1}{39}\left(\begin{array}{rr}
6 & 9 \\
-3 & 2
\end{array}\right)
$$

thus the solution to our system of equations \mathbf{x} is

$$
\mathbf{x}=\mathbf{A}^{-1} \mathbf{B}=\frac{1}{39}\left(\begin{array}{rr}
6 & 9 \\
-3 & 2
\end{array}\right)\binom{15}{16}=\frac{1}{39}\binom{234}{-13}=\binom{6}{-1 / 3}
$$

finally

$$
\mathbf{x}=\binom{x}{y}=\binom{6}{-1 / 3}
$$

which means our solution is

$$
x=6, \quad y=-\frac{1}{3}
$$

Example 9.2.2 (Solution to a linear system with an inverse (3×3)).
Using an inverse we can solve the system

$$
\begin{array}{r}
2 x_{1}+x_{3}=2 \\
-2 x_{1}+3 x_{2}+4 x_{3}=4 \\
-5 x_{1}+5 x_{2}+6 x_{3}=1
\end{array}
$$

Solution:

We have

$$
\begin{array}{rlrl}
\left(\begin{array}{rrr}
2 & 0 & 1 \\
-2 & 3 & 4 \\
-5 & 5 & 6
\end{array}\right) & \left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right) & =\left(\begin{array}{r}
2 \\
4 \\
-1
\end{array}\right) \\
\mathbf{A} & \mathbf{x} & =\mathbf{B}
\end{array}
$$

