8 Inverse Matrix

In this section of we will examine two methods of finding the inverse of a matrix, these are

- The adjoint method.
- Gaussian Elimination.

8.1 Matrix Inverse: The Adjoint Method

We require a couple of definitions before we set out the procedure to find the inverse of a matrix.

8.1.1 Type of Matrix: Cofactor matrix

Definition 8.1 (Cofactor Matrix).

Given a $n \times n$ matrix \mathbf{A}. The cofactor matrix \mathbf{C} of \mathbf{A} is the matrix formed by evaluating the cofactors of each entry in A

$$
\mathbf{C}=\left(\begin{array}{cccc}
C_{11} & C_{12} & \ldots & C_{1 n} \\
C_{21} & C_{22} & \ldots & C_{2 n} \\
\vdots & & & \vdots \\
C_{n 1} & C_{n 2} & \ldots & C_{n n}
\end{array}\right)
$$

Example 8.1.1 (Cofactor Matrix). Find the cofactor matrix for

$$
\mathbf{A}=\left(\begin{array}{ccc}
-1 & 1 & 0 \\
2 & 0 & 0 \\
1 & 1 & -2
\end{array}\right)
$$

Solution:

In order to find the cofactor matrix for A we will need the cofactors of each and every entry in A,

$$
\begin{aligned}
& C_{11}=(-1)^{1+1} M_{11}=(-1)^{2} \operatorname{det}\left(\begin{array}{cc}
0 & 0 \\
1 & -2
\end{array}\right)=0 \\
& C_{12}=(-1)^{1+2} M_{12}=(-1)^{3} \operatorname{det}\left(\begin{array}{cc}
2 & 0 \\
1 & -2
\end{array}\right)=4 \\
& C_{13}=(-1)^{1+3} M_{13}=(-1)^{4} \operatorname{det}\left(\begin{array}{ll}
2 & 0 \\
1 & 1
\end{array}\right)=2
\end{aligned}
$$

continuing this process (you should check this) we will find

$$
\begin{array}{lll}
C_{21}=2, & C_{22}=2, & C_{23}=2 \\
C_{31}=0, & C_{32}=0, & C_{33}=-2
\end{array}
$$

and thus the cofactor matrix is

$$
\mathbf{C}=\left(\begin{array}{ccc}
0 & 4 & 2 \\
2 & 2 & 2 \\
0 & 0 & -2
\end{array}\right)
$$

8.1.2 Adjoint of a matrix

Definition 8.2 (Adjoint of a matrix).
The adjoint of a matrix \mathbf{A} denoted $\operatorname{adj}(\mathbf{A})$ is simply the transpose of the of the cofactor matrix. That is, if \mathbf{C} denotes the cofactor matrix of \mathbf{A} then

$$
\operatorname{adj}(\mathbf{A})=\mathbf{C}^{\top}
$$

Example 8.1.2 (The adjoint).
Find the adjoint of the matrix

$$
\mathbf{A}=\left(\begin{array}{ccc}
-1 & 1 & 0 \\
2 & 0 & 0 \\
1 & 1 & -2
\end{array}\right)
$$

Solution:

We have done all the hard work (finding the cofactor matrix) in the previous example

$$
\mathbf{C}=\left(\begin{array}{ccc}
0 & 4 & 2 \\
2 & 2 & 2 \\
0 & 0 & -2
\end{array}\right)
$$

thus,

$$
\operatorname{adj}(\mathbf{A})=\mathbf{C}^{\top}=\left(\begin{array}{ccc}
0 & 2 & 0 \\
4 & 2 & 0 \\
2 & 2 & -2
\end{array}\right)
$$

8.1.3 The Inverse: Using the adjoint

We are now ready to state (without proof) a useful theorem which will allow us to compute the inverse of a matrix.

Theorem 8.1.1 (Inverse using the adjoint).
Let A be a $n \times n$ matrix. If $\operatorname{det} \boldsymbol{A} \neq 0$, then

$$
\boldsymbol{A}^{-1}=\frac{1}{\operatorname{det} \boldsymbol{A}} \operatorname{adj} \boldsymbol{A}
$$

The steps involved in finding an inverse using an the adjoint method for a matrix \mathbf{A}

1. Find the determinant of the matrix of interest $\operatorname{det} \mathbf{A}$

- If $\operatorname{det} \mathbf{A} \neq 0$ then the inverse will exist.
- If $\operatorname{det} \mathbf{A}=0$ or matrix isn't square then the inverse will not exist.

2. Find the cofactor matrix \mathbf{C}, by finding the cofactor for each element of \mathbf{A}.

- The cofactor of the $i^{\text {th }}$-row $j^{\text {th }}$-column element of \mathbf{A} is

$$
C_{i j}=(-1)^{i+j} M_{i j}
$$

where $M_{i j}$ is the minor.
3. Find the adjoint of \mathbf{A}

$$
\operatorname{adj} \mathbf{A}=\mathbf{C}^{\top}
$$

4. The inverse is given by

$$
\mathbf{A}^{-1}=\frac{1}{\operatorname{det} \mathbf{A}} \operatorname{adj} \mathbf{A}
$$

Example 8.1.3 (The Inverse).
Find the inverse of

$$
\mathbf{A}=\left(\begin{array}{ccc}
-1 & 1 & 0 \\
2 & 0 & 0 \\
1 & 1 & -2
\end{array}\right)
$$

using the adjoint method.

Solution:

We have the cofactor matrix and the adjoint of \mathbf{A}

$$
\mathbf{C}=\left(\begin{array}{ccc}
0 & 4 & 2 \\
2 & 2 & 2 \\
0 & 0 & -2
\end{array}\right) \quad \text { and } \quad \operatorname{adj}(\mathbf{A})=\left(\begin{array}{ccc}
0 & 2 & 0 \\
4 & 2 & 0 \\
2 & 2 & -2
\end{array}\right)
$$

We can find the determinant of \mathbf{A} by performing a cofactor expansion about any row or column of A. Picking the third column (as it has two zeros) we have

$$
\operatorname{det} \mathbf{A}=a_{13} C_{13}+a_{23} C_{23}+a_{33} C_{33}
$$

we have all the cofactors (from the cofactor matrix) thus,

$$
\operatorname{det} \mathbf{A}=(0)(2)+(0)(2)+(-2)(-2)=4 .
$$

According to our theorem concerning the adjoint and the inverse of a matrix we have

$$
\mathbf{A}^{-1}=\frac{1}{\operatorname{det} \mathbf{A}} \operatorname{adj} \mathbf{A} \quad=\frac{1}{4}\left(\begin{array}{ccc}
0 & 2 & 0 \\
4 & 2 & 0 \\
2 & 2 & -2
\end{array}\right)
$$

and thus,

$$
\mathbf{A}^{-1}=\left(\begin{array}{ccc}
0 & 1 / 2 & 0 \\
1 & 1 / 2 & 0 \\
1 / 2 & 1 / 2 & -1 / 2
\end{array}\right)
$$

We can check if this is in fact the inverse

$$
\mathbf{A A}^{-1}=\left(\begin{array}{ccc}
-1 & 1 & 0 \\
2 & 0 & 0 \\
1 & 1 & -2
\end{array}\right)\left(\begin{array}{ccc}
0 & 1 / 2 & 0 \\
1 & 1 / 2 & 0 \\
1 / 2 & 1 / 2 & -1 / 2
\end{array}\right)=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

and

$$
\mathbf{A}^{-1} \mathbf{A}=\left(\begin{array}{ccc}
0 & 1 / 2 & 0 \\
1 & 1 / 2 & 0 \\
1 / 2 & 1 / 2 & -1 / 2
\end{array}\right)\left(\begin{array}{ccc}
-1 & 1 & 0 \\
2 & 0 & 0 \\
1 & 1 & -2
\end{array}\right)=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

and thus we have an inverse.

8.2 Matrix Inverse: Gaussian Elimination Method

Another useful method used to find an inverse of matrix involves subjecting our matrix to a series of elementary row operations.

8.2.1 Operation: Elementary Row Operations

There are three types of elementary tow operations

1. Add/subtract a multiple of one row to another row.
2. Multiply a row by a constant.
3. Interchange two rows.

Interestingly these elementary row operations have very specific effects on the determinant of a matrix.

Row Operation	Effect on determinant
Add a multiple of one row to another row	None
Multiply a row by a constant k	multiplied by k
Interchange two rows	multiplied by -1.

How can this be used to find a determinant for matrix? We can reduce a matrix A to upper triangular form using elementary row operations making it a matrix A^{\prime}. The determinant of A^{\prime} is easy to find (as it is triangular the determinant is simply the product of the entries on the diagonal) and relate its determinant to the determinant of A by working back through the row operations that were used in the reduction process.
Example 8.2.1 (The determinant using elementary row operations).
Find the determinant of

$$
A=\left(\begin{array}{ccc}
2 & 4 & 9 \\
1 & 2 & 4 \\
1 & 10 & 7
\end{array}\right)
$$

using elementary row operations.

Solution:

$$
\begin{gathered}
\left.\left(\begin{array}{ccc}
2 & 4 & 9 \\
1 & 2 & 4 \\
1 & 10 & 7
\end{array}\right) \xrightarrow[\text { (det unchanged) }]{\mathrm{R} 3 \text { to R3-R2}}\left(\begin{array}{ccc}
2 & 4 & 9 \\
1 & 2 & 4 \\
0 & 8 & 3
\end{array}\right) \xrightarrow[\text { (det } \times-1)\right]{\text { swap } 2 \text { and } \mathrm{R} 3}\left(\begin{array}{lll}
2 & 4 & 9 \\
0 & 8 & 3 \\
1 & 2 & 4
\end{array}\right) \xrightarrow[(\operatorname{det} \times 2)]{2 \times \mathrm{R} 3}\left(\begin{array}{lll}
2 & 4 & 9 \\
0 & 8 & 3 \\
2 & 4 & 8
\end{array}\right) \\
\underset{\text { (det unchanged) }}{\stackrel{\mathrm{R} 3 \text { to } 3-\mathrm{R} 1}{ }\left(\begin{array}{rrr}
2 & 4 & 9 \\
0 & 8 & 3 \\
0 & 0 & -1
\end{array}\right)}
\end{gathered}
$$

We now have the matrix A transformed into an upper triangular matrix

$$
\mathbf{A}^{\prime}=\left(\begin{array}{rrr}
2 & 4 & 9 \\
0 & 8 & 3 \\
0 & 0 & -1
\end{array}\right)
$$

the determinant of \mathbf{A}^{\prime} is given by the product of the elements on the diagonal

$$
\operatorname{det} \mathbf{A}^{\prime}=(2)(8)(-1)=-16
$$

The operations that we conducted on the matrix \mathbf{A} were

Row Operation	Effect on determinant
Add a multiple of one row to another row	det unchanged
Interchange two rows	multiplied det by -1
Multiply a row by 2	multiplied det by 2
Add a multiple of one row to another row	det unchanged

and thus,

$$
\operatorname{det} \mathbf{A}^{\prime}=(-1)(2) \operatorname{det} \mathbf{A}
$$

thus,

$$
\operatorname{det} \mathbf{A}=8
$$

8.2.2 Matrix inverse using row operations

We can use these row operations to find the inverse of a matrix, the result that we will use is quoted here without proof.

If a sequence of elementary row operations on a square matrix \mathbf{A} can reduce the matrix to the identity matrix \mathbf{I}, then the same sequence of row operations applied to \mathbf{I} will result in \mathbf{I} being transformed to \mathbf{A}^{-1}.

Of note is that

- If it's not possible to reduce \mathbf{A} to \mathbf{I} using elementary row operations then \mathbf{A} is not invertible.
- If \mathbf{A} is invertible then there will be more than one way to reduce it to \mathbf{I}.

Since we are going to perform the same operations on a given matrix

$$
\mathbf{A}=\left(\begin{array}{ccc}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right) \quad \text { and } \quad \mathbf{I}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

We will introduce the following augmented matrix, which will allow us to manipulate both matrices at the same time easily

$$
\left(\begin{array}{ccc|ccc}
a_{11} & a_{12} & a_{13} & 1 & 0 & 0 \\
a_{21} & a_{22} & a_{23} & 0 & 1 & 0 \\
a_{31} & a_{32} & a_{33} & 0 & 0 & 1
\end{array}\right)
$$

which is nothing more than both the matrices placed adjacent to one another.
Example 8.2.2 (Inverse using row operations and an augmented matrix).
Find the inverse of

$$
\mathbf{A}=\left(\begin{array}{lll}
0 & 1 & 2 \\
1 & 2 & 0 \\
2 & 0 & 1
\end{array}\right)
$$

using elementary row operations.

Solution:

Step 1: Augment the matrix with the identity matrix

$$
\left(\begin{array}{lll|lll}
0 & 1 & 2 & 1 & 0 & 0 \\
1 & 2 & 0 & 0 & 1 & 0 \\
2 & 0 & 1 & 0 & 0 & 1
\end{array}\right)
$$

Step 2: Swap rows (and multiply by a constant if necessary) to ensure that the left side of the augmented matrix will have a " 1 " in the first row first column entry

$$
\left(\begin{array}{lll|lll}
0 & 1 & 2 & 1 & 0 & 0 \\
1 & 2 & 0 & 0 & 1 & 0 \\
2 & 0 & 1 & 0 & 0 & 1
\end{array}\right) \xrightarrow{\text { Swap R1 and R2 }}\left(\begin{array}{ccc|ccc}
1 & 2 & 0 & 0 & 1 & 0 \\
0 & 1 & 2 & 1 & 0 & 0 \\
2 & 0 & 1 & 0 & 0 & 1
\end{array}\right)
$$

Step 3: Add/subtract multiples of the first row to the second and third row such that the first column of the left sided matrix has zeros beneath the leading " 1 ". In this example there is already a zero beneath the 1 and so we only need to work on the last row

$$
\left(\begin{array}{ccc|ccc}
1 & 2 & 0 & 0 & 1 & 0 \\
0 & 1 & 2 & 1 & 0 & 0 \\
2 & 0 & 1 & 0 & 0 & 1
\end{array}\right) \xrightarrow{\text { Subtract } 2 \times R 1 \text { from } R 3}\left(\begin{array}{ccc|ccc}
1 & 2 & 0 & 0 & 1 & 0 \\
0 & 1 & 2 & 1 & 0 & 0 \\
0 & -4 & 1 & 0 & -2 & 1
\end{array}\right)
$$

Step 4: Divide/multiply the second row by a constant such that the second row second column element becomes a " 1 ". In this example it is already 1.

$$
\left(\begin{array}{ccc|ccc}
1 & 2 & 0 & 0 & 1 & 0 \\
0 & 1 & 2 & 1 & 0 & 0 \\
0 & -4 & 1 & 0 & -2 & 1
\end{array}\right)
$$

Step 5: Add/subtract multiples of the second row to the first and third row such that the only non-zero remaining element in the second column is the " 1 " on the second row

$$
\begin{gathered}
\left(\begin{array}{ccc|ccc}
1 & 2 & 0 & 0 & 1 & 0 \\
0 & 1 & 2 & 1 & 0 & 0 \\
0 & -4 & 1 & 0 & -2 & 1
\end{array}\right) \xrightarrow{\text { add } 4 \times \mathrm{R} 2 \text { to } \mathrm{R} 3}\left(\begin{array}{ccc|ccc}
1 & 2 & 0 & 0 & 1 & 0 \\
0 & 1 & 2 & 1 & 0 & 0 \\
0 & 0 & 9 & 4 & -2 & 1
\end{array}\right) \\
\left(\begin{array}{ccc|ccc}
1 & 2 & 0 & 0 & 1 & 0 \\
0 & 1 & 2 & 1 & 0 & 0 \\
0 & 0 & 9 & 4 & -2 & 1
\end{array}\right) \xrightarrow{\text { subtract } 2 \times \mathrm{R} 2 \text { from } \mathrm{R} 1}\left(\begin{array}{ccc|ccc}
1 & 0 & -4 & -2 & 1 & 0 \\
0 & 1 & 2 & 1 & 0 & 0 \\
0 & 0 & 9 & 4 & -2 & 1
\end{array}\right)
\end{gathered}
$$

Step 6: Divide/multiply the third row by a constant such that the third row third column element of becomes a " 1 ". In this example we need to divide the third row by 9

$$
\left(\begin{array}{ccc|ccc}
1 & 0 & -4 & -2 & 1 & 0 \\
0 & 1 & 2 & 1 & 0 & 0 \\
0 & 0 & 9 & 4 & -2 & 1
\end{array}\right) \xrightarrow{\mathrm{R} 3 \times 1 / 9}\left(\begin{array}{ccc|ccc}
1 & 0 & -4 & -2 & 1 & 0 \\
0 & 1 & 2 & 1 & 0 & 0 \\
0 & 0 & 1 & 4 / 9 & -2 / 9 & 1 / 9
\end{array}\right)
$$

Step 7: Add/subtract multiples of the third row to the first and second row such that the only non-zero remaining element in the third column is the " 1 " on the third row

$$
\begin{gathered}
\left(\begin{array}{ccc|ccc}
1 & 0 & -4 & -2 & 1 & 0 \\
0 & 1 & 2 & 1 & 0 & 0 \\
0 & 0 & 1 & 4 / 9 & -2 / 9 & 1 / 9
\end{array}\right) \xrightarrow{\text { add } 4 \times \mathrm{R} 3 \text { to R1 }}\left(\begin{array}{ccc|ccc}
1 & 0 & 0 & -2 / 9 & 1 / 9 & 4 / 9 \\
0 & 1 & 2 & 1 & 0 & 0 \\
0 & 0 & 1 & 4 / 9 & -2 / 9 & 1 / 9
\end{array}\right) \\
\left(\begin{array}{ccc|ccc}
1 & 0 & 0 & -2 / 9 & 1 / 9 & 4 / 9 \\
0 & 1 & 2 & 1 & 0 & 0 \\
0 & 0 & 1 & 4 / 9 & -2 / 9 & 1 / 9
\end{array}\right) \xrightarrow{\text { subtract } 2 \times \mathrm{R} 3 \text { from R2 }}\left(\begin{array}{ccc|ccc}
1 & 0 & 0 & -2 / 9 & 1 / 9 & 4 / 9 \\
0 & 1 & 2 & 1 / 9 & 4 / 9 & -2 / 9 \\
0 & 0 & 1 & 4 / 9 & -2 / 9 & 1 / 9
\end{array}\right)
\end{gathered}
$$

Step 8: Decompose the augmented matrix. The matrix on the left hand side should be the identity while the matrix on the right is the inverse of the original matrix.

$$
\mathbf{A}^{-1}=\left(\begin{array}{ccc}
-2 / 9 & 1 / 9 & 4 / 9 \\
1 / 9 & 4 / 9 & -2 / 9 \\
4 / 9 & -2 / 9 & 1 / 9
\end{array}\right)
$$

Example 8.2.3 (Exercises).
Use elementary row operations to find the inverses of the following matrices

$$
\mathbf{B}=\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 5 & 3 \\
1 & 0 & 8
\end{array}\right) \quad \mathbf{C}=\left(\begin{array}{rrrr}
2 & 3 & 3 & 1 \\
0 & 4 & 3 & -3 \\
2 & -1 & -2 & -3 \\
0 & -4 & -3 & 2
\end{array}\right)
$$

