
8 Inverse Matrix

In this section of we will examine two methods of finding the inverse of a matrix, these
are

• The adjoint method.

• Gaussian Elimination.

8.1 Matrix Inverse: The Adjoint Method

We require a couple of definitions before we set out the procedure to find the inverse of
a matrix.

8.1.1 Type of Matrix: Cofactor matrix

Definition 8.1 (Cofactor Matrix).
Given a n×n matrix A. The cofactor matrix C of A is the matrix formed by evaluating
the cofactors of each entry in A

C =











C11 C12 . . . C1n

C21 C22 . . . C2n
...

...
Cn1 Cn2 . . . Cnn











Example 8.1.1 (Cofactor Matrix). Find the cofactor matrix for

A =





−1 1 0
2 0 0
1 1 −2





Solution:

In order to find the cofactor matrix for A we will need the cofactors of each and every
entry in A,

C11 = (−1)1+1M11 = (−1)2det

(

0 0
1 −2

)

= 0

C12 = (−1)1+2M12 = (−1)3det

(

2 0
1 −2

)

= 4

C13 = (−1)1+3M13 = (−1)4det

(

2 0
1 1

)

= 2
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continuing this process (you should check this) we will find

C21 = 2, C22 = 2, C23 = 2

C31 = 0, C32 = 0, C33 = −2

and thus the cofactor matrix is

C =





0 4 2
2 2 2
0 0 −2





8.1.2 Adjoint of a matrix

Definition 8.2 (Adjoint of a matrix).
The adjoint of a matrix A denoted adj(A) is simply the transpose of the of the cofactor

matrix. That is, if C denotes the cofactor matrix of A then

adj(A) = C⊤

Example 8.1.2 (The adjoint).
Find the adjoint of the matrix

A =





−1 1 0
2 0 0
1 1 −2





Solution:

We have done all the hard work (finding the cofactor matrix) in the previous example

C =





0 4 2
2 2 2
0 0 −2





thus,

adj(A) = C⊤ =





0 2 0
4 2 0
2 2 −2
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8.1.3 The Inverse: Using the adjoint

We are now ready to state (without proof) a useful theorem which will allow us to com-
pute the inverse of a matrix.

Theorem 8.1.1 (Inverse using the adjoint).
Let A be a n× n matrix. If detA 6= 0, then

A
−1 =

1

detA
adjA

The steps involved in finding an inverse using an the adjoint method for a matrix A

1. Find the determinant of the matrix of interest detA

• If detA 6= 0 then the inverse will exist.

• If detA = 0 or matrix isn’t square then the inverse will not exist.

2. Find the cofactor matrix C, by finding the cofactor for each element of A.

• The cofactor of the ith-row jth-column element of A is

Cij = (−1)i+jMij

where Mij is the minor.

3. Find the adjoint of A

adjA = C⊤

4. The inverse is given by

A−1 =
1

detA
adjA

Example 8.1.3 (The Inverse).
Find the inverse of

A =





−1 1 0
2 0 0
1 1 −2





using the adjoint method.

Solution:
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We have the cofactor matrix and the adjoint of A

C =





0 4 2
2 2 2
0 0 −2



 and adj(A) =





0 2 0
4 2 0
2 2 −2





We can find the determinant of A by performing a cofactor expansion about any row or
column of A. Picking the third column (as it has two zeros) we have

detA = a13C13 + a23C23 + a33C33

we have all the cofactors (from the cofactor matrix) thus,

detA = (0)(2) + (0)(2) + (−2)(−2) = 4.

According to our theorem concerning the adjoint and the inverse of a matrix we have

A−1 =
1

detA
adjA =

1

4





0 2 0
4 2 0
2 2 −2





and thus,

A−1 =





0 1/2 0
1 1/2 0
1/2 1/2 −1/2





We can check if this is in fact the inverse

AA−1 =





−1 1 0
2 0 0
1 1 −2









0 1/2 0
1 1/2 0
1/2 1/2 −1/2



 =





1 0 0
0 1 0
0 0 1





and

A−1A =





0 1/2 0
1 1/2 0
1/2 1/2 −1/2









−1 1 0
2 0 0
1 1 −2



 =





1 0 0
0 1 0
0 0 1





and thus we have an inverse.
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8.2 Matrix Inverse: Gaussian Elimination Method

Another useful method used to find an inverse of matrix involves subjecting our matrix
to a series of elementary row operations.

8.2.1 Operation: Elementary Row Operations

There are three types of elementary tow operations

1. Add/subtract a multiple of one row to another row.

2. Multiply a row by a constant.

3. Interchange two rows.

Interestingly these elementary row operations have very specific effects on the determi-
nant of a matrix.

Row Operation Effect on determinant

Add a multiple of one row to another row None
Multiply a row by a constant k multiplied by k
Interchange two rows multiplied by −1.

How can this be used to find a determinant for matrix? We can reduce a matrix A
to upper triangular form using elementary row operations making it a matrix A′. The
determinant of A′ is easy to find (as it is triangular the determinant is simply the product
of the entries on the diagonal) and relate its determinant to the determinant of A by
working back through the row operations that were used in the reduction process.

Example 8.2.1 (The determinant using elementary row operations).

Find the determinant of

A =





2 4 9
1 2 4
1 10 7





using elementary row operations.

Solution:





2 4 9
1 2 4
1 10 7





R3 to R3−R2
−−−−−−−−−→
(det unchanged)





2 4 9
1 2 4
0 8 3





swap R2 and R3
−−−−−−−−−→

(det ×− 1)





2 4 9
0 8 3
1 2 4





2×R3
−−−−−→
(det ×2)





2 4 9
0 8 3
2 4 8





R3 to R3−R1
−−−−−−−−−→
(det unchanged)





2 4 9
0 8 3
0 0 −1
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We now have the matrix A transformed into an upper triangular matrix

A′ =





2 4 9
0 8 3
0 0 −1





the determinant of A’ is given by the product of the elements on the diagonal

detA′ = (2)(8)(−1) = −16

The operations that we conducted on the matrix A were

Row Operation Effect on determinant

Add a multiple of one row to another row det unchanged
Interchange two rows multiplied det by −1
Multiply a row by 2 multiplied det by 2
Add a multiple of one row to another row det unchanged

and thus,

detA′ = (−1)(2)detA

thus,

detA = 8.

8.2.2 Matrix inverse using row operations

We can use these row operations to find the inverse of a matrix, the result that we will
use is quoted here without proof.

If a sequence of elementary row operations on a square matrix A can reduce the matrix
to the identity matrix I, then the same sequence of row operations applied to I will result
in I being transformed to A−1.

Of note is that

• If it’s not possible to reduce A to I using elementary row operations then A is not
invertible.

• If A is invertible then there will be more than one way to reduce it to I.

Since we are going to perform the same operations on a given matrix

A =





a11 a12 a13
a21 a22 a23
a31 a32 a33



 and I =





1 0 0
0 1 0
0 0 1
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We will introduce the following augmented matrix, which will allow us to manipulate
both matrices at the same time easily





a11 a12 a13 1 0 0
a21 a22 a23 0 1 0
a31 a32 a33 0 0 1





which is nothing more than both the matrices placed adjacent to one another.

Example 8.2.2 (Inverse using row operations and an augmented matrix).
Find the inverse of

A =





0 1 2
1 2 0
2 0 1





using elementary row operations.

Solution:

Step 1: Augment the matrix with the identity matrix





0 1 2 1 0 0
1 2 0 0 1 0
2 0 1 0 0 1





Step 2: Swap rows (and multiply by a constant if necessary) to ensure that the left side
of the augmented matrix will have a “1” in the first row first column entry





0 1 2 1 0 0
1 2 0 0 1 0
2 0 1 0 0 1





Swap R1 and R2
−−−−−−−−−→





1 2 0 0 1 0
0 1 2 1 0 0
2 0 1 0 0 1





Step 3: Add/subtract multiples of the first row to the second and third row such that the
first column of the left sided matrix has zeros beneath the leading “1”. In this example
there is already a zero beneath the 1 and so we only need to work on the last row





1 2 0 0 1 0
0 1 2 1 0 0
2 0 1 0 0 1





Subtract 2×R1 from R3
−−−−−−−−−−−−−→





1 2 0 0 1 0
0 1 2 1 0 0
0 −4 1 0 −2 1





Step 4: Divide/multiply the second row by a constant such that the second row second
column element becomes a “1”. In this example it is already 1.





1 2 0 0 1 0
0 1 2 1 0 0
0 −4 1 0 −2 1
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Step 5: Add/subtract multiples of the second row to the first and third row such that
the only non-zero remaining element in the second column is the “1” on the second row





1 2 0 0 1 0
0 1 2 1 0 0
0 −4 1 0 −2 1





add 4×R2 to R3
−−−−−−−−−→





1 2 0 0 1 0
0 1 2 1 0 0
0 0 9 4 −2 1









1 2 0 0 1 0
0 1 2 1 0 0
0 0 9 4 −2 1





subtract 2×R2 from R1
−−−−−−−−−−−−−→





1 0 −4 −2 1 0
0 1 2 1 0 0
0 0 9 4 −2 1





Step 6: Divide/multiply the third row by a constant such that the third row third
column element of becomes a “1”. In this example we need to divide the third row by 9





1 0 −4 −2 1 0
0 1 2 1 0 0
0 0 9 4 −2 1





R3 ×1/9
−−−−→





1 0 −4 −2 1 0
0 1 2 1 0 0
0 0 1 4/9 −2/9 1/9





Step 7: Add/subtract multiples of the third row to the first and second row such that
the only non-zero remaining element in the third column is the “1” on the third row





1 0 −4 −2 1 0
0 1 2 1 0 0
0 0 1 4/9 −2/9 1/9





add 4× R3 to R1
−−−−−−−−−→





1 0 0 −2/9 1/9 4/9
0 1 2 1 0 0
0 0 1 4/9 −2/9 1/9









1 0 0 −2/9 1/9 4/9
0 1 2 1 0 0
0 0 1 4/9 −2/9 1/9





subtract 2× R3 from R2
−−−−−−−−−−−−−→





1 0 0 −2/9 1/9 4/9
0 1 2 1/9 4/9 −2/9
0 0 1 4/9 −2/9 1/9





Step 8: Decompose the augmented matrix. The matrix on the left hand side should be
the identity while the matrix on the right is the inverse of the original matrix.

A−1 =





−2/9 1/9 4/9
1/9 4/9 −2/9
4/9 −2/9 1/9





Example 8.2.3 (Exercises).
Use elementary row operations to find the inverses of the following matrices

B =





1 2 3
2 5 3
1 0 8



 C =









2 3 3 1
0 4 3 −3
2 −1 −2 −3
0 −4 −3 2
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