OLLSCOIL NA hEIREANN MA NUAD

THE NATIONAL UNIVERSITY OF IRELAND MAYNOOTH

MATHEMATICAL PHYSICS

EE112

Engineering Mathematics II

Curves and Curvature

Prof. D. M. Heffernan and Mr. S. Pouryahya

5 Curves and Curvature

Here the aim is to examine curves that are written in parametric form. This section will culminate to an idea of curvature of a curve at every point along its length.

5.1 Parametric Representation of a Curve

Consider a curve C

(a) The curve C

(b) At each point on the curve there is an associated position vector

Figure 1: A curve and a position vector associated with each point on the curve.
at a particular point on this curve (x, y, z) one can associate a position vector

$$
\mathbf{r}=x \mathbf{i}+y \mathbf{j}+z \mathbf{k}
$$

The collection of position vectors which sweep out the curve C can be written in parametric form as

$$
\mathbf{r}(t)=x(t) \mathbf{i}+y(t) \mathbf{j}+z(t) \mathbf{k}
$$

From this parametrised position vector we have the curves parametric representation

$$
x=x(t), \quad y=y(t) \quad \text { and } \quad z=z(t)
$$

5.2 Tangent to a Curve

The usefulness of having the parametric representation can be immediately appreciated when looking for a tangent to a curve; this is given in form of the tangent vector

Definition 5.1.

Given a curve C with an associated parametrised position vector

$$
\mathbf{r}(t)=x(t) \mathbf{i}+y(t) \mathbf{j}+z(t) \mathbf{k}
$$

The Tangent vector is given by

$$
\mathbf{r}^{\prime} \equiv \frac{d \mathbf{r}}{d t}=\frac{d x}{d t} \mathbf{i}+\frac{d y}{d t} \mathbf{j}+\frac{d z}{d t} \mathbf{k}
$$

where

$$
x=x(t), \quad y=y(t) \quad \text { and } \quad z=z(t)
$$

is the parametric form of the curve.

One can see the result with the aid of a diagram and a little calculus

Figure 2: Finding the tangent to the curve at the point with position vector $\mathbf{r}(t)$.
We have

$$
\Delta \mathbf{r}=\mathbf{r}(t+\Delta t)-\mathbf{r}(t)
$$

the vector $\Delta \mathbf{r}$ is our approximation (made sufficiently small) to the curve at the point with position vector $\mathbf{r}(t)$. We can say that

$$
\frac{\Delta \mathbf{r}}{\Delta t}=\frac{\mathbf{r}(t+\Delta t)-\mathbf{r}(t)}{\Delta t}
$$

to find the tangent to the curve all one requires is to take the limit as $\Delta t \rightarrow 0$

$$
\lim _{\Delta t \rightarrow 0} \frac{\Delta \mathbf{r}}{\Delta t}=\lim _{\Delta t \rightarrow 0} \frac{\mathbf{r}(t+\Delta t)-\mathbf{r}(t)}{\Delta t}=\frac{d \mathbf{r}}{d t}
$$

5.2.1 Unit tangent vector

We can find a unit tangent vector to the curve C by dividing the tangent vector by its length

$$
\hat{\mathbf{u}} \equiv \frac{d \mathbf{r}}{d t} /\left|\frac{d \mathbf{r}}{d t}\right|
$$

5.2.2 Worked example

Example 5.2.1. Consider the vector function

$$
\mathbf{r}(t)=a \cos (t) \mathbf{i}+b \sin (t) \mathbf{j}
$$

Identify the curve that the position vector sweeps out. Assume that $a=b$ and find a unit tangent vector to the curve.

Solution:

We have

$$
\mathbf{r}(t)=a \cos (t) \mathbf{i}+b \sin (t) \mathbf{j}
$$

but we know that the position vector is given by

$$
\mathbf{r}=x \mathbf{i}+y \mathbf{j}
$$

giving us the parameteric equation to the curve

$$
x=a \cos (t), \quad \text { and } \quad y=b \sin (t)
$$

example continued ...
notice that we can write the parameteric equations as

$$
\frac{x}{a}=\cos (t), \quad \text { and } \quad \frac{y}{b}=\sin (t)
$$

and hence,

$$
\begin{aligned}
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}} & =\cos ^{2}(t)+\sin ^{2}(t) \\
& =1
\end{aligned}
$$

Thus the curve can be written in implicit form as

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1
$$

which is the equation of an ellipse on the $x y$ plane $(z=0)$.
We now set about finding a unit tangent vector. The question tells us to assume that $a=b$ which corresponds to the equation of a circle. We know that a tangent to the curve is given by

$$
\begin{aligned}
\mathbf{u}=\frac{d \mathbf{r}}{d t} & =\frac{d}{d t}[a \cos (t)] \mathbf{i}+\frac{d}{d t}[b \sin (t)] \mathbf{j} \\
& =-a \sin (t) \mathbf{i}+b \cos (t) \mathbf{j}
\end{aligned}
$$

Letting $b=a$ we have

$$
\mathbf{u}=-a \sin (t) \mathbf{i}+a \cos (t) \mathbf{j}
$$

To make the vector of unit length we need to divide by its length

$$
|\mathbf{u}|=\sqrt{a^{2} \sin ^{2}(t)+a^{2} \cos ^{2}(t)}=\sqrt{a^{2}\left(\sin ^{2}(t)+\cos ^{2}(t)\right)}=\sqrt{a^{2}}=a
$$

The unit tangent vector is given by

$$
\hat{\mathbf{u}}=\frac{1}{a}(-a \sin (t) \mathbf{i}+a \cos (t) \mathbf{j})=-\sin (t) \mathbf{i}+\cos (t) \mathbf{j}
$$

5.3 Arc Length of a Curve

If S is the arc length of the curve C between the points a and b as shown in the diagram

Figure 3: The length of the curve S between two points on the curve C.
Using the notation

$$
\mathbf{r}^{\prime}=\frac{d x}{d t} \mathbf{i}+\frac{d y}{d t} \mathbf{j}+\frac{d z}{d t} \mathbf{k}
$$

we know that

$$
\left|\mathbf{r}^{\prime}\right|^{2}=\mathbf{r}^{\prime} \cdot \mathbf{r}^{\prime}=\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}+\left(\frac{d z}{d t}\right)^{2}=\left(\frac{d S}{d t}\right)^{2}
$$

where $d S^{2}=d x^{2}+d y^{2}+d z^{2}$. Hence we have an expression for an infinitesimal length along the curve C

$$
d S=\sqrt{\mathbf{r}^{\prime} \cdot \mathbf{r}^{\prime}} d t
$$

In order to find the length of the section S between the points a and b we simply take the sum of the infinitesimal lengths between the points along the curve,

Important Formula 5.1 (Arc Length of a Curve).

$$
S=\int_{t_{a}}^{t_{b}} \sqrt{\mathbf{r}^{\prime} \cdot \mathbf{r}^{\prime}} d t=\int_{t_{a}}^{t_{b}}\left|\mathbf{r}^{\prime}\right| d t
$$

5.4 Curvature and the Principal Unit Normal Vector

We begin with

$$
\hat{\mathbf{u}} \cdot \hat{\mathbf{u}}=1
$$

Using the product rule and differentiating with respect to S

$$
\hat{\mathbf{u}} \cdot \frac{d \hat{\mathbf{u}}}{d S}+\frac{d \hat{\mathbf{u}}}{d S} \cdot \hat{\mathbf{u}}=0
$$

and now,

$$
\begin{aligned}
2 \hat{\mathbf{u}} \cdot \frac{d \hat{\mathbf{u}}}{d S} & =0 \\
& \Rightarrow \hat{\mathbf{u}} \cdot \frac{d \hat{\mathbf{u}}}{d S}=0
\end{aligned}
$$

Hence we have $\frac{d \hat{\mathbf{u}}}{d S}$ is perpendicular to $\hat{\mathbf{u}}$.

Figure 4: The vector $\hat{\mathbf{N}}$ is perpendicular to $\hat{\mathbf{u}}$.
We can write

$$
\frac{d \hat{\mathbf{u}}}{d S}=\kappa \hat{\mathbf{N}}
$$

where κ is the curvature.

5.4.1 Direct Calculation of Curvature and unit Normal in terms of ' t '

We can calculate κ in terms of t without having to calculate $\hat{\mathbf{u}}$ in terms of S first.

$$
\kappa \equiv\left|\frac{d \hat{\mathbf{u}}}{d S}\right|
$$

now,

$$
\frac{d \hat{\mathbf{u}}}{d t}=\frac{d \hat{\mathbf{u}}}{d S} \frac{d S}{d t}
$$

hence,

$$
\frac{d \hat{\mathbf{u}}}{d S}=\frac{d \hat{\mathbf{u}}}{d t} / \frac{d S}{d t} .
$$

Let,

$$
S=\int\left|\mathbf{r}^{\prime}\right| d t \Rightarrow \frac{d S}{d t}=\left|\mathbf{r}^{\prime}\right|
$$

$$
\kappa=\frac{\left|\frac{d \hat{\mathbf{u}}}{d t}\right|}{\left|\mathbf{r}^{\prime}\right|}=\left|\frac{d \hat{\mathbf{u}}}{d t}\right| /\left|\mathbf{r}^{\prime}\right|
$$

Similarly we can obtain $\hat{\mathbf{N}}$ in terms of t.

$$
\hat{\mathbf{N}}=\frac{1}{\kappa} \frac{d \hat{\mathbf{u}}}{d S}
$$

i.e.

$$
\hat{\mathbf{N}}=\frac{1}{\left|\frac{d \hat{\mathbf{u}}}{d t}\right| /\left|\mathbf{r}^{\prime}\right|} \cdot \frac{\frac{d \hat{\mathbf{u}}}{d t}}{\frac{d S}{d t}}=\frac{\mid \boldsymbol{y}^{\prime} \uparrow}{\left|\frac{d \hat{\mathbf{u}}}{d t}\right|} \cdot \frac{\frac{d \hat{\mathbf{u}}}{d t}}{\left|\mathbf{y}^{\prime}\right|}
$$

$$
\hat{\mathbf{N}}=\frac{d \hat{\mathbf{u}}}{d t} /\left|\frac{d \hat{\mathbf{u}}}{d t}\right|
$$

Hence we can calculate $\hat{\mathbf{N}}$ without having to calculate S first.

5.4.2 Worked Examples

Example 5.4.1. Calculate

1. the principal unit normal vector, $\hat{\mathbf{N}}$
2. the curvature, κ
3. the radius of curvature, R, for the helix

$$
\mathbf{r}=a \cos (t) \mathbf{i}+a \sin (t) \mathbf{j}+c t \mathbf{k}
$$

where a and c are positive constants

Solution:

Figure 5: A helix
To find the unit normal we begin by finding the unit tangent vector, $\hat{\mathbf{u}}$

$$
\begin{aligned}
\mathbf{r} & =a \cos (t) \mathbf{i}+a \sin (t) \mathbf{j}+c t \mathbf{k} \\
\mathbf{r}^{\prime} & =-a \sin (t) \mathbf{i}+a \cos (t) \mathbf{j}+c \mathbf{k} \\
& \Rightarrow\left|\mathbf{r}^{\prime}\right|=\sqrt{a^{2} \cos ^{2}(t)+a^{2} \sin ^{2}(t)+c^{2}}=\sqrt{a^{2}+c^{2}}
\end{aligned}
$$

hence,

$$
\hat{\mathbf{u}}=\frac{\mathbf{r}^{\prime}}{\left|\mathbf{r}^{\prime}\right|}=\frac{1}{\sqrt{a^{2}+c^{2}}}\{-a \sin (t) \mathbf{i}+a \cos (t) \mathbf{j}+c \mathbf{k}\}
$$

example continued...
The normal vector is the derivative of the tangent vector with respect to t

$$
\frac{d \hat{\mathbf{u}}}{d t}=\frac{1}{\sqrt{a^{2}+c^{2}}}\{-a \cos (t) \mathbf{i}-a \sin (t) \mathbf{j}\}
$$

which has a length

$$
\left|\frac{d \hat{\mathbf{u}}}{d t}\right|=\frac{1}{\sqrt{a^{2}+c^{2}}}\left\{\sqrt{a^{2} \cos ^{2}(t)+a^{2} \sin ^{2}(t)}\right\}=\frac{a}{\sqrt{a^{2}+c^{2}}} .
$$

Finally the unit normal vector, $\hat{\mathbf{N}}$, is given by

$$
\hat{\mathbf{N}}=\frac{d \hat{\mathbf{u}}}{d t} /\left|\frac{d \hat{\mathbf{u}}}{d t}\right|=\frac{1}{\sqrt{a^{2}+c^{2}}}\{-a \cos (t) \mathbf{i}-a \sin (t) \mathbf{j}\} \frac{\sqrt{a^{2}+c^{2}}}{a}
$$

$$
\hat{\mathbf{N}}=-\cos (t) \mathbf{i}-\sin (t) \mathbf{j}
$$

We now find the curvature κ of the helix, recall that

$$
\kappa=\left|\frac{d \hat{\mathbf{u}}}{d t}\right| /\left|\mathbf{r}^{\prime}\right|=\frac{a}{\sqrt{a^{2}+c^{2}}} \frac{1}{\sqrt{a^{2}+c^{2}}}
$$

$$
\kappa=\frac{a}{a^{2}+c^{2}}
$$

The radius of curvature $R=\frac{1}{\kappa}$

$$
R=\frac{1}{\kappa}=\frac{a^{2}+c^{2}}{a}
$$

Note that when $c=0$ the helix collapses to a circle in the $\mathrm{x}-\mathrm{y}$ plane and that the radius of curvature R becomes $R=a$ as would be expected.

Example 5.4.2. Obtain

1. the unit tangent vector, $\hat{\mathbf{u}}$
2. the unit normal vector, $\hat{\mathbf{N}}$
3. the curvature, κ
for the curve,

$$
\mathbf{r}=(\cos (t)+t \sin (t)) \mathbf{i}+(\sin (t)-t \cos (t)) \mathbf{j}, \quad t>0
$$

Solution:

Figure 6: A plot of the curve for $0 \leq t \leq 6 \pi$
Taking the first derivative we have the tangent vector

$$
\begin{aligned}
\mathbf{r}^{\prime} & =(-\sin (t)+t \cos (t)+\sin (t)) \mathbf{i}+(\cos (t)+t \sin (t)-\cos (t)) \mathbf{j} \\
& =t \cos (t) \mathbf{i}+t \sin (t) \mathbf{j}
\end{aligned}
$$

with length

$$
\left|\mathbf{r}^{\prime}\right|=\sqrt{t^{2} \cos ^{2}(t)+t^{2} \sin ^{2}(t)}=t
$$

hence

$$
\hat{\mathbf{u}}=\cos (t) \mathbf{i}+\sin (t) \mathbf{j}
$$

example continued ...
The unit normal vector is given by

$$
\hat{\mathbf{N}}=\frac{d \hat{\mathbf{u}}}{d t} /\left|\frac{d \hat{\mathbf{u}}}{d t}\right|
$$

and we have

$$
\frac{d \hat{\mathbf{u}}}{d t}=-\sin (t) \mathbf{i}+\cos (t) \mathbf{j}
$$

which has a length

$$
\left|\frac{d \hat{\mathbf{u}}}{d t}\right|=\sin ^{2}(t)+\cos ^{2}(t)=1
$$

hence,

$$
\hat{\mathbf{N}}=-\sin (t) \mathbf{i}+\cos (t) \mathbf{j}
$$

Finally we find the curvature κ

$$
\kappa=\left|\frac{d \hat{\mathbf{u}}}{d t}\right| /\left|\mathbf{r}^{\prime}\right|=\frac{1}{t}
$$

Example 5.4.3. Obtain

1. the unit tangent vector, $\hat{\mathbf{u}}$
2. the unit normal vector, $\hat{\mathbf{N}}$
3. the curvature, κ
for the curve,

$$
\mathbf{r}=t \mathbf{i}+\frac{t^{2}}{2} \mathbf{j}
$$

Solution:

For a sketch of the curve recall that

$$
\mathbf{r}=x \mathbf{i}+y \mathbf{j}+z \mathbf{k}
$$

which for this curve implies that

$$
x=t, \quad y=\frac{t^{2}}{2}, \quad \text { and } \quad z=0
$$

thus the curve describes the parabola

$$
y=\frac{x^{2}}{2}
$$

Figure 7: A parabola in the $x y$-plane.
example continued ...
Now,

$$
\mathbf{r}=t \mathbf{i}+\frac{t^{2}}{2} \mathbf{j} \Rightarrow \mathbf{r}^{\prime}=1 \mathbf{i}+t \mathbf{j}
$$

and,

$$
\left|\mathbf{r}^{\prime}\right|=\sqrt{1+t^{2}}
$$

Hence,

$$
\hat{\mathbf{u}}=\frac{1}{\sqrt{1+t^{2}}}\{1 \mathbf{i}+t \mathbf{j}\}
$$

To find the normal vector we require the derivative of the unit tangent vector

$$
\begin{aligned}
\frac{d \hat{\mathbf{u}}}{d t} & =\frac{1}{\sqrt{1+t^{2}}}\{0 \mathbf{i}+1 \mathbf{j}\}+\{1 \mathbf{i}+t \mathbf{j}\}\left(-\frac{1}{2}\left(1+t^{2}\right)^{-\frac{3}{2}} 2 t\right) \\
& =\frac{\mathbf{j}}{\sqrt{1+t^{2}}}-\frac{t(1 \mathbf{i}+t \mathbf{j})}{\left(1+t^{2}\right)^{\frac{3}{2}}} \\
& =\frac{\left(1+t^{2}\right) \mathbf{j}-t \mathbf{i}-t^{2} \mathbf{j}}{\left(1+t^{2}\right)^{\frac{3}{2}}} \\
& =\frac{1}{\left(1+t^{2}\right)^{\frac{3}{2}}}\{-t \mathbf{i}+\mathbf{j}\}
\end{aligned}
$$

the length of this vector is

$$
\left|\frac{d \hat{\mathbf{u}}}{d t}\right|=\frac{1}{\left(1+t^{2}\right)^{\frac{3}{2}}}\left\{\sqrt{1+t^{2}}\right\}=\frac{1}{1+t^{2}}
$$

We can now find the unit normal vector

$$
\hat{\mathbf{N}}=\frac{d \hat{\mathbf{u}}}{d t} /\left|\frac{d \hat{\mathbf{u}}}{d t}\right|=\frac{1}{\left(1+t^{2}\right)^{\frac{3}{2}}}\{-t \mathbf{i}+\mathbf{j}\}\left(1+t^{2}\right)
$$

example continued ...

$$
\hat{\mathbf{N}}=\frac{1}{\sqrt{1+t^{2}}}\{-t \mathbf{i}+1 \mathbf{j}\}
$$

Finally we find the curvature κ

$$
\kappa=\left|\frac{d \hat{\mathbf{u}}}{d t}\right| /\left|\mathbf{r}^{\prime}\right|=\frac{1}{1+t^{2}} \frac{1}{\sqrt{1+t^{2}}}
$$

$$
\kappa=\frac{1}{\left(1+t^{2}\right)^{\frac{3}{2}}}
$$

